Black Lives Matter. Support the Equal Justice Initiative.

Source file src/compress/flate/deflate.go

Documentation: compress/flate

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package flate
     6  
     7  import (
     8  	"fmt"
     9  	"io"
    10  	"math"
    11  )
    12  
    13  const (
    14  	NoCompression      = 0
    15  	BestSpeed          = 1
    16  	BestCompression    = 9
    17  	DefaultCompression = -1
    18  
    19  	// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
    20  	// entropy encoding. This mode is useful in compressing data that has
    21  	// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
    22  	// that lacks an entropy encoder. Compression gains are achieved when
    23  	// certain bytes in the input stream occur more frequently than others.
    24  	//
    25  	// Note that HuffmanOnly produces a compressed output that is
    26  	// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
    27  	// continue to be able to decompress this output.
    28  	HuffmanOnly = -2
    29  )
    30  
    31  const (
    32  	logWindowSize = 15
    33  	windowSize    = 1 << logWindowSize
    34  	windowMask    = windowSize - 1
    35  
    36  	// The LZ77 step produces a sequence of literal tokens and <length, offset>
    37  	// pair tokens. The offset is also known as distance. The underlying wire
    38  	// format limits the range of lengths and offsets. For example, there are
    39  	// 256 legitimate lengths: those in the range [3, 258]. This package's
    40  	// compressor uses a higher minimum match length, enabling optimizations
    41  	// such as finding matches via 32-bit loads and compares.
    42  	baseMatchLength = 3       // The smallest match length per the RFC section 3.2.5
    43  	minMatchLength  = 4       // The smallest match length that the compressor actually emits
    44  	maxMatchLength  = 258     // The largest match length
    45  	baseMatchOffset = 1       // The smallest match offset
    46  	maxMatchOffset  = 1 << 15 // The largest match offset
    47  
    48  	// The maximum number of tokens we put into a single flate block, just to
    49  	// stop things from getting too large.
    50  	maxFlateBlockTokens = 1 << 14
    51  	maxStoreBlockSize   = 65535
    52  	hashBits            = 17 // After 17 performance degrades
    53  	hashSize            = 1 << hashBits
    54  	hashMask            = (1 << hashBits) - 1
    55  	maxHashOffset       = 1 << 24
    56  
    57  	skipNever = math.MaxInt32
    58  )
    59  
    60  type compressionLevel struct {
    61  	level, good, lazy, nice, chain, fastSkipHashing int
    62  }
    63  
    64  var levels = []compressionLevel{
    65  	{0, 0, 0, 0, 0, 0}, // NoCompression.
    66  	{1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go.
    67  	// For levels 2-3 we don't bother trying with lazy matches.
    68  	{2, 4, 0, 16, 8, 5},
    69  	{3, 4, 0, 32, 32, 6},
    70  	// Levels 4-9 use increasingly more lazy matching
    71  	// and increasingly stringent conditions for "good enough".
    72  	{4, 4, 4, 16, 16, skipNever},
    73  	{5, 8, 16, 32, 32, skipNever},
    74  	{6, 8, 16, 128, 128, skipNever},
    75  	{7, 8, 32, 128, 256, skipNever},
    76  	{8, 32, 128, 258, 1024, skipNever},
    77  	{9, 32, 258, 258, 4096, skipNever},
    78  }
    79  
    80  type compressor struct {
    81  	compressionLevel
    82  
    83  	w          *huffmanBitWriter
    84  	bulkHasher func([]byte, []uint32)
    85  
    86  	// compression algorithm
    87  	fill      func(*compressor, []byte) int // copy data to window
    88  	step      func(*compressor)             // process window
    89  	sync      bool                          // requesting flush
    90  	bestSpeed *deflateFast                  // Encoder for BestSpeed
    91  
    92  	// Input hash chains
    93  	// hashHead[hashValue] contains the largest inputIndex with the specified hash value
    94  	// If hashHead[hashValue] is within the current window, then
    95  	// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
    96  	// with the same hash value.
    97  	chainHead  int
    98  	hashHead   [hashSize]uint32
    99  	hashPrev   [windowSize]uint32
   100  	hashOffset int
   101  
   102  	// input window: unprocessed data is window[index:windowEnd]
   103  	index         int
   104  	window        []byte
   105  	windowEnd     int
   106  	blockStart    int  // window index where current tokens start
   107  	byteAvailable bool // if true, still need to process window[index-1].
   108  
   109  	// queued output tokens
   110  	tokens []token
   111  
   112  	// deflate state
   113  	length         int
   114  	offset         int
   115  	hash           uint32
   116  	maxInsertIndex int
   117  	err            error
   118  
   119  	// hashMatch must be able to contain hashes for the maximum match length.
   120  	hashMatch [maxMatchLength - 1]uint32
   121  }
   122  
   123  func (d *compressor) fillDeflate(b []byte) int {
   124  	if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
   125  		// shift the window by windowSize
   126  		copy(d.window, d.window[windowSize:2*windowSize])
   127  		d.index -= windowSize
   128  		d.windowEnd -= windowSize
   129  		if d.blockStart >= windowSize {
   130  			d.blockStart -= windowSize
   131  		} else {
   132  			d.blockStart = math.MaxInt32
   133  		}
   134  		d.hashOffset += windowSize
   135  		if d.hashOffset > maxHashOffset {
   136  			delta := d.hashOffset - 1
   137  			d.hashOffset -= delta
   138  			d.chainHead -= delta
   139  
   140  			// Iterate over slices instead of arrays to avoid copying
   141  			// the entire table onto the stack (Issue #18625).
   142  			for i, v := range d.hashPrev[:] {
   143  				if int(v) > delta {
   144  					d.hashPrev[i] = uint32(int(v) - delta)
   145  				} else {
   146  					d.hashPrev[i] = 0
   147  				}
   148  			}
   149  			for i, v := range d.hashHead[:] {
   150  				if int(v) > delta {
   151  					d.hashHead[i] = uint32(int(v) - delta)
   152  				} else {
   153  					d.hashHead[i] = 0
   154  				}
   155  			}
   156  		}
   157  	}
   158  	n := copy(d.window[d.windowEnd:], b)
   159  	d.windowEnd += n
   160  	return n
   161  }
   162  
   163  func (d *compressor) writeBlock(tokens []token, index int) error {
   164  	if index > 0 {
   165  		var window []byte
   166  		if d.blockStart <= index {
   167  			window = d.window[d.blockStart:index]
   168  		}
   169  		d.blockStart = index
   170  		d.w.writeBlock(tokens, false, window)
   171  		return d.w.err
   172  	}
   173  	return nil
   174  }
   175  
   176  // fillWindow will fill the current window with the supplied
   177  // dictionary and calculate all hashes.
   178  // This is much faster than doing a full encode.
   179  // Should only be used after a reset.
   180  func (d *compressor) fillWindow(b []byte) {
   181  	// Do not fill window if we are in store-only mode.
   182  	if d.compressionLevel.level < 2 {
   183  		return
   184  	}
   185  	if d.index != 0 || d.windowEnd != 0 {
   186  		panic("internal error: fillWindow called with stale data")
   187  	}
   188  
   189  	// If we are given too much, cut it.
   190  	if len(b) > windowSize {
   191  		b = b[len(b)-windowSize:]
   192  	}
   193  	// Add all to window.
   194  	n := copy(d.window, b)
   195  
   196  	// Calculate 256 hashes at the time (more L1 cache hits)
   197  	loops := (n + 256 - minMatchLength) / 256
   198  	for j := 0; j < loops; j++ {
   199  		index := j * 256
   200  		end := index + 256 + minMatchLength - 1
   201  		if end > n {
   202  			end = n
   203  		}
   204  		toCheck := d.window[index:end]
   205  		dstSize := len(toCheck) - minMatchLength + 1
   206  
   207  		if dstSize <= 0 {
   208  			continue
   209  		}
   210  
   211  		dst := d.hashMatch[:dstSize]
   212  		d.bulkHasher(toCheck, dst)
   213  		var newH uint32
   214  		for i, val := range dst {
   215  			di := i + index
   216  			newH = val
   217  			hh := &d.hashHead[newH&hashMask]
   218  			// Get previous value with the same hash.
   219  			// Our chain should point to the previous value.
   220  			d.hashPrev[di&windowMask] = *hh
   221  			// Set the head of the hash chain to us.
   222  			*hh = uint32(di + d.hashOffset)
   223  		}
   224  		d.hash = newH
   225  	}
   226  	// Update window information.
   227  	d.windowEnd = n
   228  	d.index = n
   229  }
   230  
   231  // Try to find a match starting at index whose length is greater than prevSize.
   232  // We only look at chainCount possibilities before giving up.
   233  func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
   234  	minMatchLook := maxMatchLength
   235  	if lookahead < minMatchLook {
   236  		minMatchLook = lookahead
   237  	}
   238  
   239  	win := d.window[0 : pos+minMatchLook]
   240  
   241  	// We quit when we get a match that's at least nice long
   242  	nice := len(win) - pos
   243  	if d.nice < nice {
   244  		nice = d.nice
   245  	}
   246  
   247  	// If we've got a match that's good enough, only look in 1/4 the chain.
   248  	tries := d.chain
   249  	length = prevLength
   250  	if length >= d.good {
   251  		tries >>= 2
   252  	}
   253  
   254  	wEnd := win[pos+length]
   255  	wPos := win[pos:]
   256  	minIndex := pos - windowSize
   257  
   258  	for i := prevHead; tries > 0; tries-- {
   259  		if wEnd == win[i+length] {
   260  			n := matchLen(win[i:], wPos, minMatchLook)
   261  
   262  			if n > length && (n > minMatchLength || pos-i <= 4096) {
   263  				length = n
   264  				offset = pos - i
   265  				ok = true
   266  				if n >= nice {
   267  					// The match is good enough that we don't try to find a better one.
   268  					break
   269  				}
   270  				wEnd = win[pos+n]
   271  			}
   272  		}
   273  		if i == minIndex {
   274  			// hashPrev[i & windowMask] has already been overwritten, so stop now.
   275  			break
   276  		}
   277  		i = int(d.hashPrev[i&windowMask]) - d.hashOffset
   278  		if i < minIndex || i < 0 {
   279  			break
   280  		}
   281  	}
   282  	return
   283  }
   284  
   285  func (d *compressor) writeStoredBlock(buf []byte) error {
   286  	if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
   287  		return d.w.err
   288  	}
   289  	d.w.writeBytes(buf)
   290  	return d.w.err
   291  }
   292  
   293  const hashmul = 0x1e35a7bd
   294  
   295  // hash4 returns a hash representation of the first 4 bytes
   296  // of the supplied slice.
   297  // The caller must ensure that len(b) >= 4.
   298  func hash4(b []byte) uint32 {
   299  	return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
   300  }
   301  
   302  // bulkHash4 will compute hashes using the same
   303  // algorithm as hash4
   304  func bulkHash4(b []byte, dst []uint32) {
   305  	if len(b) < minMatchLength {
   306  		return
   307  	}
   308  	hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
   309  	dst[0] = (hb * hashmul) >> (32 - hashBits)
   310  	end := len(b) - minMatchLength + 1
   311  	for i := 1; i < end; i++ {
   312  		hb = (hb << 8) | uint32(b[i+3])
   313  		dst[i] = (hb * hashmul) >> (32 - hashBits)
   314  	}
   315  }
   316  
   317  // matchLen returns the number of matching bytes in a and b
   318  // up to length 'max'. Both slices must be at least 'max'
   319  // bytes in size.
   320  func matchLen(a, b []byte, max int) int {
   321  	a = a[:max]
   322  	b = b[:len(a)]
   323  	for i, av := range a {
   324  		if b[i] != av {
   325  			return i
   326  		}
   327  	}
   328  	return max
   329  }
   330  
   331  // encSpeed will compress and store the currently added data,
   332  // if enough has been accumulated or we at the end of the stream.
   333  // Any error that occurred will be in d.err
   334  func (d *compressor) encSpeed() {
   335  	// We only compress if we have maxStoreBlockSize.
   336  	if d.windowEnd < maxStoreBlockSize {
   337  		if !d.sync {
   338  			return
   339  		}
   340  
   341  		// Handle small sizes.
   342  		if d.windowEnd < 128 {
   343  			switch {
   344  			case d.windowEnd == 0:
   345  				return
   346  			case d.windowEnd <= 16:
   347  				d.err = d.writeStoredBlock(d.window[:d.windowEnd])
   348  			default:
   349  				d.w.writeBlockHuff(false, d.window[:d.windowEnd])
   350  				d.err = d.w.err
   351  			}
   352  			d.windowEnd = 0
   353  			d.bestSpeed.reset()
   354  			return
   355  		}
   356  
   357  	}
   358  	// Encode the block.
   359  	d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd])
   360  
   361  	// If we removed less than 1/16th, Huffman compress the block.
   362  	if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) {
   363  		d.w.writeBlockHuff(false, d.window[:d.windowEnd])
   364  	} else {
   365  		d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd])
   366  	}
   367  	d.err = d.w.err
   368  	d.windowEnd = 0
   369  }
   370  
   371  func (d *compressor) initDeflate() {
   372  	d.window = make([]byte, 2*windowSize)
   373  	d.hashOffset = 1
   374  	d.tokens = make([]token, 0, maxFlateBlockTokens+1)
   375  	d.length = minMatchLength - 1
   376  	d.offset = 0
   377  	d.byteAvailable = false
   378  	d.index = 0
   379  	d.hash = 0
   380  	d.chainHead = -1
   381  	d.bulkHasher = bulkHash4
   382  }
   383  
   384  func (d *compressor) deflate() {
   385  	if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
   386  		return
   387  	}
   388  
   389  	d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
   390  	if d.index < d.maxInsertIndex {
   391  		d.hash = hash4(d.window[d.index : d.index+minMatchLength])
   392  	}
   393  
   394  Loop:
   395  	for {
   396  		if d.index > d.windowEnd {
   397  			panic("index > windowEnd")
   398  		}
   399  		lookahead := d.windowEnd - d.index
   400  		if lookahead < minMatchLength+maxMatchLength {
   401  			if !d.sync {
   402  				break Loop
   403  			}
   404  			if d.index > d.windowEnd {
   405  				panic("index > windowEnd")
   406  			}
   407  			if lookahead == 0 {
   408  				// Flush current output block if any.
   409  				if d.byteAvailable {
   410  					// There is still one pending token that needs to be flushed
   411  					d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))
   412  					d.byteAvailable = false
   413  				}
   414  				if len(d.tokens) > 0 {
   415  					if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
   416  						return
   417  					}
   418  					d.tokens = d.tokens[:0]
   419  				}
   420  				break Loop
   421  			}
   422  		}
   423  		if d.index < d.maxInsertIndex {
   424  			// Update the hash
   425  			d.hash = hash4(d.window[d.index : d.index+minMatchLength])
   426  			hh := &d.hashHead[d.hash&hashMask]
   427  			d.chainHead = int(*hh)
   428  			d.hashPrev[d.index&windowMask] = uint32(d.chainHead)
   429  			*hh = uint32(d.index + d.hashOffset)
   430  		}
   431  		prevLength := d.length
   432  		prevOffset := d.offset
   433  		d.length = minMatchLength - 1
   434  		d.offset = 0
   435  		minIndex := d.index - windowSize
   436  		if minIndex < 0 {
   437  			minIndex = 0
   438  		}
   439  
   440  		if d.chainHead-d.hashOffset >= minIndex &&
   441  			(d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||
   442  				d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {
   443  			if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
   444  				d.length = newLength
   445  				d.offset = newOffset
   446  			}
   447  		}
   448  		if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||
   449  			d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {
   450  			// There was a match at the previous step, and the current match is
   451  			// not better. Output the previous match.
   452  			if d.fastSkipHashing != skipNever {
   453  				d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset)))
   454  			} else {
   455  				d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset)))
   456  			}
   457  			// Insert in the hash table all strings up to the end of the match.
   458  			// index and index-1 are already inserted. If there is not enough
   459  			// lookahead, the last two strings are not inserted into the hash
   460  			// table.
   461  			if d.length <= d.fastSkipHashing {
   462  				var newIndex int
   463  				if d.fastSkipHashing != skipNever {
   464  					newIndex = d.index + d.length
   465  				} else {
   466  					newIndex = d.index + prevLength - 1
   467  				}
   468  				index := d.index
   469  				for index++; index < newIndex; index++ {
   470  					if index < d.maxInsertIndex {
   471  						d.hash = hash4(d.window[index : index+minMatchLength])
   472  						// Get previous value with the same hash.
   473  						// Our chain should point to the previous value.
   474  						hh := &d.hashHead[d.hash&hashMask]
   475  						d.hashPrev[index&windowMask] = *hh
   476  						// Set the head of the hash chain to us.
   477  						*hh = uint32(index + d.hashOffset)
   478  					}
   479  				}
   480  				d.index = index
   481  
   482  				if d.fastSkipHashing == skipNever {
   483  					d.byteAvailable = false
   484  					d.length = minMatchLength - 1
   485  				}
   486  			} else {
   487  				// For matches this long, we don't bother inserting each individual
   488  				// item into the table.
   489  				d.index += d.length
   490  				if d.index < d.maxInsertIndex {
   491  					d.hash = hash4(d.window[d.index : d.index+minMatchLength])
   492  				}
   493  			}
   494  			if len(d.tokens) == maxFlateBlockTokens {
   495  				// The block includes the current character
   496  				if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
   497  					return
   498  				}
   499  				d.tokens = d.tokens[:0]
   500  			}
   501  		} else {
   502  			if d.fastSkipHashing != skipNever || d.byteAvailable {
   503  				i := d.index - 1
   504  				if d.fastSkipHashing != skipNever {
   505  					i = d.index
   506  				}
   507  				d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))
   508  				if len(d.tokens) == maxFlateBlockTokens {
   509  					if d.err = d.writeBlock(d.tokens, i+1); d.err != nil {
   510  						return
   511  					}
   512  					d.tokens = d.tokens[:0]
   513  				}
   514  			}
   515  			d.index++
   516  			if d.fastSkipHashing == skipNever {
   517  				d.byteAvailable = true
   518  			}
   519  		}
   520  	}
   521  }
   522  
   523  func (d *compressor) fillStore(b []byte) int {
   524  	n := copy(d.window[d.windowEnd:], b)
   525  	d.windowEnd += n
   526  	return n
   527  }
   528  
   529  func (d *compressor) store() {
   530  	if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
   531  		d.err = d.writeStoredBlock(d.window[:d.windowEnd])
   532  		d.windowEnd = 0
   533  	}
   534  }
   535  
   536  // storeHuff compresses and stores the currently added data
   537  // when the d.window is full or we are at the end of the stream.
   538  // Any error that occurred will be in d.err
   539  func (d *compressor) storeHuff() {
   540  	if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
   541  		return
   542  	}
   543  	d.w.writeBlockHuff(false, d.window[:d.windowEnd])
   544  	d.err = d.w.err
   545  	d.windowEnd = 0
   546  }
   547  
   548  func (d *compressor) write(b []byte) (n int, err error) {
   549  	if d.err != nil {
   550  		return 0, d.err
   551  	}
   552  	n = len(b)
   553  	for len(b) > 0 {
   554  		d.step(d)
   555  		b = b[d.fill(d, b):]
   556  		if d.err != nil {
   557  			return 0, d.err
   558  		}
   559  	}
   560  	return n, nil
   561  }
   562  
   563  func (d *compressor) syncFlush() error {
   564  	if d.err != nil {
   565  		return d.err
   566  	}
   567  	d.sync = true
   568  	d.step(d)
   569  	if d.err == nil {
   570  		d.w.writeStoredHeader(0, false)
   571  		d.w.flush()
   572  		d.err = d.w.err
   573  	}
   574  	d.sync = false
   575  	return d.err
   576  }
   577  
   578  func (d *compressor) init(w io.Writer, level int) (err error) {
   579  	d.w = newHuffmanBitWriter(w)
   580  
   581  	switch {
   582  	case level == NoCompression:
   583  		d.window = make([]byte, maxStoreBlockSize)
   584  		d.fill = (*compressor).fillStore
   585  		d.step = (*compressor).store
   586  	case level == HuffmanOnly:
   587  		d.window = make([]byte, maxStoreBlockSize)
   588  		d.fill = (*compressor).fillStore
   589  		d.step = (*compressor).storeHuff
   590  	case level == BestSpeed:
   591  		d.compressionLevel = levels[level]
   592  		d.window = make([]byte, maxStoreBlockSize)
   593  		d.fill = (*compressor).fillStore
   594  		d.step = (*compressor).encSpeed
   595  		d.bestSpeed = newDeflateFast()
   596  		d.tokens = make([]token, maxStoreBlockSize)
   597  	case level == DefaultCompression:
   598  		level = 6
   599  		fallthrough
   600  	case 2 <= level && level <= 9:
   601  		d.compressionLevel = levels[level]
   602  		d.initDeflate()
   603  		d.fill = (*compressor).fillDeflate
   604  		d.step = (*compressor).deflate
   605  	default:
   606  		return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
   607  	}
   608  	return nil
   609  }
   610  
   611  func (d *compressor) reset(w io.Writer) {
   612  	d.w.reset(w)
   613  	d.sync = false
   614  	d.err = nil
   615  	switch d.compressionLevel.level {
   616  	case NoCompression:
   617  		d.windowEnd = 0
   618  	case BestSpeed:
   619  		d.windowEnd = 0
   620  		d.tokens = d.tokens[:0]
   621  		d.bestSpeed.reset()
   622  	default:
   623  		d.chainHead = -1
   624  		for i := range d.hashHead {
   625  			d.hashHead[i] = 0
   626  		}
   627  		for i := range d.hashPrev {
   628  			d.hashPrev[i] = 0
   629  		}
   630  		d.hashOffset = 1
   631  		d.index, d.windowEnd = 0, 0
   632  		d.blockStart, d.byteAvailable = 0, false
   633  		d.tokens = d.tokens[:0]
   634  		d.length = minMatchLength - 1
   635  		d.offset = 0
   636  		d.hash = 0
   637  		d.maxInsertIndex = 0
   638  	}
   639  }
   640  
   641  func (d *compressor) close() error {
   642  	if d.err != nil {
   643  		return d.err
   644  	}
   645  	d.sync = true
   646  	d.step(d)
   647  	if d.err != nil {
   648  		return d.err
   649  	}
   650  	if d.w.writeStoredHeader(0, true); d.w.err != nil {
   651  		return d.w.err
   652  	}
   653  	d.w.flush()
   654  	return d.w.err
   655  }
   656  
   657  // NewWriter returns a new Writer compressing data at the given level.
   658  // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
   659  // higher levels typically run slower but compress more. Level 0
   660  // (NoCompression) does not attempt any compression; it only adds the
   661  // necessary DEFLATE framing.
   662  // Level -1 (DefaultCompression) uses the default compression level.
   663  // Level -2 (HuffmanOnly) will use Huffman compression only, giving
   664  // a very fast compression for all types of input, but sacrificing considerable
   665  // compression efficiency.
   666  //
   667  // If level is in the range [-2, 9] then the error returned will be nil.
   668  // Otherwise the error returned will be non-nil.
   669  func NewWriter(w io.Writer, level int) (*Writer, error) {
   670  	var dw Writer
   671  	if err := dw.d.init(w, level); err != nil {
   672  		return nil, err
   673  	}
   674  	return &dw, nil
   675  }
   676  
   677  // NewWriterDict is like NewWriter but initializes the new
   678  // Writer with a preset dictionary. The returned Writer behaves
   679  // as if the dictionary had been written to it without producing
   680  // any compressed output. The compressed data written to w
   681  // can only be decompressed by a Reader initialized with the
   682  // same dictionary.
   683  func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
   684  	dw := &dictWriter{w}
   685  	zw, err := NewWriter(dw, level)
   686  	if err != nil {
   687  		return nil, err
   688  	}
   689  	zw.d.fillWindow(dict)
   690  	zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
   691  	return zw, err
   692  }
   693  
   694  type dictWriter struct {
   695  	w io.Writer
   696  }
   697  
   698  func (w *dictWriter) Write(b []byte) (n int, err error) {
   699  	return w.w.Write(b)
   700  }
   701  
   702  // A Writer takes data written to it and writes the compressed
   703  // form of that data to an underlying writer (see NewWriter).
   704  type Writer struct {
   705  	d    compressor
   706  	dict []byte
   707  }
   708  
   709  // Write writes data to w, which will eventually write the
   710  // compressed form of data to its underlying writer.
   711  func (w *Writer) Write(data []byte) (n int, err error) {
   712  	return w.d.write(data)
   713  }
   714  
   715  // Flush flushes any pending data to the underlying writer.
   716  // It is useful mainly in compressed network protocols, to ensure that
   717  // a remote reader has enough data to reconstruct a packet.
   718  // Flush does not return until the data has been written.
   719  // Calling Flush when there is no pending data still causes the Writer
   720  // to emit a sync marker of at least 4 bytes.
   721  // If the underlying writer returns an error, Flush returns that error.
   722  //
   723  // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
   724  func (w *Writer) Flush() error {
   725  	// For more about flushing:
   726  	// https://www.bolet.org/~pornin/deflate-flush.html
   727  	return w.d.syncFlush()
   728  }
   729  
   730  // Close flushes and closes the writer.
   731  func (w *Writer) Close() error {
   732  	return w.d.close()
   733  }
   734  
   735  // Reset discards the writer's state and makes it equivalent to
   736  // the result of NewWriter or NewWriterDict called with dst
   737  // and w's level and dictionary.
   738  func (w *Writer) Reset(dst io.Writer) {
   739  	if dw, ok := w.d.w.writer.(*dictWriter); ok {
   740  		// w was created with NewWriterDict
   741  		dw.w = dst
   742  		w.d.reset(dw)
   743  		w.d.fillWindow(w.dict)
   744  	} else {
   745  		// w was created with NewWriter
   746  		w.d.reset(dst)
   747  	}
   748  }
   749  

View as plain text