// Copyright 2020 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package embed provides access to files embedded in the running Go program. // // Go source files that import "embed" can use the //go:embed directive // to initialize a variable of type string, []byte, or FS with the contents of // files read from the package directory or subdirectories at compile time. // // For example, here are three ways to embed a file named hello.txt // and then print its contents at run time. // // Embedding one file into a string: // // import _ "embed" // // //go:embed hello.txt // var s string // print(s) // // Embedding one file into a slice of bytes: // // import _ "embed" // // //go:embed hello.txt // var b []byte // print(string(b)) // // Embedded one or more files into a file system: // // import "embed" // // //go:embed hello.txt // var f embed.FS // data, _ := f.ReadFile("hello.txt") // print(string(data)) // // Directives // // A //go:embed directive above a variable declaration specifies which files to embed, // using one or more path.Match patterns. // // The directive must immediately precede a line containing the declaration of a single variable. // Only blank lines and ‘//’ line comments are permitted between the directive and the declaration. // // The type of the variable must be a string type, or a slice of a byte type, // or FS (or an alias of FS). // // For example: // // package server // // import "embed" // // // content holds our static web server content. // //go:embed image/* template/* // //go:embed html/index.html // var content embed.FS // // The Go build system will recognize the directives and arrange for the declared variable // (in the example above, content) to be populated with the matching files from the file system. // // The //go:embed directive accepts multiple space-separated patterns for // brevity, but it can also be repeated, to avoid very long lines when there are // many patterns. The patterns are interpreted relative to the package directory // containing the source file. The path separator is a forward slash, even on // Windows systems. Patterns may not contain ‘.’ or ‘..’ or empty path elements, // nor may they begin or end with a slash. To match everything in the current // directory, use ‘*’ instead of ‘.’. To allow for naming files with spaces in // their names, patterns can be written as Go double-quoted or back-quoted // string literals. // // If a pattern names a directory, all files in the subtree rooted at that directory are // embedded (recursively), except that files with names beginning with ‘.’ or ‘_’ // are excluded. So the variable in the above example is almost equivalent to: // // // content is our static web server content. // //go:embed image template html/index.html // var content embed.FS // // The difference is that ‘image/*’ embeds ‘image/.tempfile’ while ‘image’ does not. // // The //go:embed directive can be used with both exported and unexported variables, // depending on whether the package wants to make the data available to other packages. // It can only be used with global variables at package scope, // not with local variables. // // Patterns must not match files outside the package's module, such as ‘.git/*’ or symbolic links. // Matches for empty directories are ignored. After that, each pattern in a //go:embed line // must match at least one file or non-empty directory. // // If any patterns are invalid or have invalid matches, the build will fail. // // Strings and Bytes // // The //go:embed line for a variable of type string or []byte can have only a single pattern, // and that pattern can match only a single file. The string or []byte is initialized with // the contents of that file. // // The //go:embed directive requires importing "embed", even when using a string or []byte. // In source files that don't refer to embed.FS, use a blank import (import _ "embed"). // // File Systems // // For embedding a single file, a variable of type string or []byte is often best. // The FS type enables embedding a tree of files, such as a directory of static // web server content, as in the example above. // // FS implements the io/fs package's FS interface, so it can be used with any package that // understands file systems, including net/http, text/template, and html/template. // // For example, given the content variable in the example above, we can write: // // http.Handle("/static/", http.StripPrefix("/static/", http.FileServer(http.FS(content)))) // // template.ParseFS(content, "*.tmpl") // // Tools // // To support tools that analyze Go packages, the patterns found in //go:embed lines // are available in “go list” output. See the EmbedPatterns, TestEmbedPatterns, // and XTestEmbedPatterns fields in the “go help list” output. // package embed import ( "errors" "io" "io/fs" "time" ) // An FS is a read-only collection of files, usually initialized with a //go:embed directive. // When declared without a //go:embed directive, an FS is an empty file system. // // An FS is a read-only value, so it is safe to use from multiple goroutines // simultaneously and also safe to assign values of type FS to each other. // // FS implements fs.FS, so it can be used with any package that understands // file system interfaces, including net/http, text/template, and html/template. // // See the package documentation for more details about initializing an FS. type FS struct { // The compiler knows the layout of this struct. // See cmd/compile/internal/staticdata's WriteEmbed. // // The files list is sorted by name but not by simple string comparison. // Instead, each file's name takes the form "dir/elem" or "dir/elem/". // The optional trailing slash indicates that the file is itself a directory. // The files list is sorted first by dir (if dir is missing, it is taken to be ".") // and then by base, so this list of files: // // p // q/ // q/r // q/s/ // q/s/t // q/s/u // q/v // w // // is actually sorted as: // // p # dir=. elem=p // q/ # dir=. elem=q // w/ # dir=. elem=w // q/r # dir=q elem=r // q/s/ # dir=q elem=s // q/v # dir=q elem=v // q/s/t # dir=q/s elem=t // q/s/u # dir=q/s elem=u // // This order brings directory contents together in contiguous sections // of the list, allowing a directory read to use binary search to find // the relevant sequence of entries. files *[]file } // split splits the name into dir and elem as described in the // comment in the FS struct above. isDir reports whether the // final trailing slash was present, indicating that name is a directory. func split(name string) (dir, elem string, isDir bool) { if name[len(name)-1] == '/' { isDir = true name = name[:len(name)-1] } i := len(name) - 1 for i >= 0 && name[i] != '/' { i-- } if i < 0 { return ".", name, isDir } return name[:i], name[i+1:], isDir } // trimSlash trims a trailing slash from name, if present, // returning the possibly shortened name. func trimSlash(name string) string { if len(name) > 0 && name[len(name)-1] == '/' { return name[:len(name)-1] } return name } var ( _ fs.ReadDirFS = FS{} _ fs.ReadFileFS = FS{} ) // A file is a single file in the FS. // It implements fs.FileInfo and fs.DirEntry. type file struct { // The compiler knows the layout of this struct. // See cmd/compile/internal/staticdata's WriteEmbed. name string data string hash [16]byte // truncated SHA256 hash } var ( _ fs.FileInfo = (*file)(nil) _ fs.DirEntry = (*file)(nil) ) func (f *file) Name() string { _, elem, _ := split(f.name); return elem } func (f *file) Size() int64 { return int64(len(f.data)) } func (f *file) ModTime() time.Time { return time.Time{} } func (f *file) IsDir() bool { _, _, isDir := split(f.name); return isDir } func (f *file) Sys() interface{} { return nil } func (f *file) Type() fs.FileMode { return f.Mode().Type() } func (f *file) Info() (fs.FileInfo, error) { return f, nil } func (f *file) Mode() fs.FileMode { if f.IsDir() { return fs.ModeDir | 0555 } return 0444 } // dotFile is a file for the root directory, // which is omitted from the files list in a FS. var dotFile = &file{name: "./"} // lookup returns the named file, or nil if it is not present. func (f FS) lookup(name string) *file { if !fs.ValidPath(name) { // The compiler should never emit a file with an invalid name, // so this check is not strictly necessary (if name is invalid, // we shouldn't find a match below), but it's a good backstop anyway. return nil } if name == "." { return dotFile } if f.files == nil { return nil } // Binary search to find where name would be in the list, // and then check if name is at that position. dir, elem, _ := split(name) files := *f.files i := sortSearch(len(files), func(i int) bool { idir, ielem, _ := split(files[i].name) return idir > dir || idir == dir && ielem >= elem }) if i < len(files) && trimSlash(files[i].name) == name { return &files[i] } return nil } // readDir returns the list of files corresponding to the directory dir. func (f FS) readDir(dir string) []file { if f.files == nil { return nil } // Binary search to find where dir starts and ends in the list // and then return that slice of the list. files := *f.files i := sortSearch(len(files), func(i int) bool { idir, _, _ := split(files[i].name) return idir >= dir }) j := sortSearch(len(files), func(j int) bool { jdir, _, _ := split(files[j].name) return jdir > dir }) return files[i:j] } // Open opens the named file for reading and returns it as an fs.File. func (f FS) Open(name string) (fs.File, error) { file := f.lookup(name) if file == nil { return nil, &fs.PathError{Op: "open", Path: name, Err: fs.ErrNotExist} } if file.IsDir() { return &openDir{file, f.readDir(name), 0}, nil } return &openFile{file, 0}, nil } // ReadDir reads and returns the entire named directory. func (f FS) ReadDir(name string) ([]fs.DirEntry, error) { file, err := f.Open(name) if err != nil { return nil, err } dir, ok := file.(*openDir) if !ok { return nil, &fs.PathError{Op: "read", Path: name, Err: errors.New("not a directory")} } list := make([]fs.DirEntry, len(dir.files)) for i := range list { list[i] = &dir.files[i] } return list, nil } // ReadFile reads and returns the content of the named file. func (f FS) ReadFile(name string) ([]byte, error) { file, err := f.Open(name) if err != nil { return nil, err } ofile, ok := file.(*openFile) if !ok { return nil, &fs.PathError{Op: "read", Path: name, Err: errors.New("is a directory")} } return []byte(ofile.f.data), nil } // An openFile is a regular file open for reading. type openFile struct { f *file // the file itself offset int64 // current read offset } func (f *openFile) Close() error { return nil } func (f *openFile) Stat() (fs.FileInfo, error) { return f.f, nil } func (f *openFile) Read(b []byte) (int, error) { if f.offset >= int64(len(f.f.data)) { return 0, io.EOF } if f.offset < 0 { return 0, &fs.PathError{Op: "read", Path: f.f.name, Err: fs.ErrInvalid} } n := copy(b, f.f.data[f.offset:]) f.offset += int64(n) return n, nil } func (f *openFile) Seek(offset int64, whence int) (int64, error) { switch whence { case 0: // offset += 0 case 1: offset += f.offset case 2: offset += int64(len(f.f.data)) } if offset < 0 || offset > int64(len(f.f.data)) { return 0, &fs.PathError{Op: "seek", Path: f.f.name, Err: fs.ErrInvalid} } f.offset = offset return offset, nil } // An openDir is a directory open for reading. type openDir struct { f *file // the directory file itself files []file // the directory contents offset int // the read offset, an index into the files slice } func (d *openDir) Close() error { return nil } func (d *openDir) Stat() (fs.FileInfo, error) { return d.f, nil } func (d *openDir) Read([]byte) (int, error) { return 0, &fs.PathError{Op: "read", Path: d.f.name, Err: errors.New("is a directory")} } func (d *openDir) ReadDir(count int) ([]fs.DirEntry, error) { n := len(d.files) - d.offset if n == 0 { if count <= 0 { return nil, nil } return nil, io.EOF } if count > 0 && n > count { n = count } list := make([]fs.DirEntry, n) for i := range list { list[i] = &d.files[d.offset+i] } d.offset += n return list, nil } // sortSearch is like sort.Search, avoiding an import. func sortSearch(n int, f func(int) bool) int { // Define f(-1) == false and f(n) == true. // Invariant: f(i-1) == false, f(j) == true. i, j := 0, n for i < j { h := int(uint(i+j) >> 1) // avoid overflow when computing h // i ≤ h < j if !f(h) { i = h + 1 // preserves f(i-1) == false } else { j = h // preserves f(j) == true } } // i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i. return i }