// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package png import ( "bytes" "compress/zlib" "encoding/binary" "fmt" "image" "image/color" "io" "testing" ) func diff(m0, m1 image.Image) error { b0, b1 := m0.Bounds(), m1.Bounds() if !b0.Size().Eq(b1.Size()) { return fmt.Errorf("dimensions differ: %v vs %v", b0, b1) } dx := b1.Min.X - b0.Min.X dy := b1.Min.Y - b0.Min.Y for y := b0.Min.Y; y < b0.Max.Y; y++ { for x := b0.Min.X; x < b0.Max.X; x++ { c0 := m0.At(x, y) c1 := m1.At(x+dx, y+dy) r0, g0, b0, a0 := c0.RGBA() r1, g1, b1, a1 := c1.RGBA() if r0 != r1 || g0 != g1 || b0 != b1 || a0 != a1 { return fmt.Errorf("colors differ at (%d, %d): %v vs %v", x, y, c0, c1) } } } return nil } func encodeDecode(m image.Image) (image.Image, error) { var b bytes.Buffer err := Encode(&b, m) if err != nil { return nil, err } return Decode(&b) } func TestWriter(t *testing.T) { // The filenames variable is declared in reader_test.go. names := filenames if testing.Short() { names = filenamesShort } for _, fn := range names { qfn := "testdata/pngsuite/" + fn + ".png" // Read the image. m0, err := readPNG(qfn) if err != nil { t.Error(fn, err) continue } // Read the image again, encode it, and decode it. m1, err := readPNG(qfn) if err != nil { t.Error(fn, err) continue } m2, err := encodeDecode(m1) if err != nil { t.Error(fn, err) continue } // Compare the two. err = diff(m0, m2) if err != nil { t.Error(fn, err) continue } } } func TestWriterPaletted(t *testing.T) { const width, height = 32, 16 testCases := []struct { plen int bitdepth uint8 datalen int }{ { plen: 256, bitdepth: 8, datalen: (1 + width) * height, }, { plen: 128, bitdepth: 8, datalen: (1 + width) * height, }, { plen: 16, bitdepth: 4, datalen: (1 + width/2) * height, }, { plen: 4, bitdepth: 2, datalen: (1 + width/4) * height, }, { plen: 2, bitdepth: 1, datalen: (1 + width/8) * height, }, } for _, tc := range testCases { t.Run(fmt.Sprintf("plen-%d", tc.plen), func(t *testing.T) { // Create a paletted image with the correct palette length palette := make(color.Palette, tc.plen) for i := range palette { palette[i] = color.NRGBA{ R: uint8(i), G: uint8(i), B: uint8(i), A: 255, } } m0 := image.NewPaletted(image.Rect(0, 0, width, height), palette) i := 0 for y := 0; y < height; y++ { for x := 0; x < width; x++ { m0.SetColorIndex(x, y, uint8(i%tc.plen)) i++ } } // Encode the image var b bytes.Buffer if err := Encode(&b, m0); err != nil { t.Error(err) return } const chunkFieldsLength = 12 // 4 bytes for length, name and crc data := b.Bytes() i = len(pngHeader) for i < len(data)-chunkFieldsLength { length := binary.BigEndian.Uint32(data[i : i+4]) name := string(data[i+4 : i+8]) switch name { case "IHDR": bitdepth := data[i+8+8] if bitdepth != tc.bitdepth { t.Errorf("got bitdepth %d, want %d", bitdepth, tc.bitdepth) } case "IDAT": // Uncompress the image data r, err := zlib.NewReader(bytes.NewReader(data[i+8 : i+8+int(length)])) if err != nil { t.Error(err) return } n, err := io.Copy(io.Discard, r) if err != nil { t.Errorf("got error while reading image data: %v", err) } if n != int64(tc.datalen) { t.Errorf("got uncompressed data length %d, want %d", n, tc.datalen) } } i += chunkFieldsLength + int(length) } }) } } func TestWriterLevels(t *testing.T) { m := image.NewNRGBA(image.Rect(0, 0, 100, 100)) var b1, b2 bytes.Buffer if err := (&Encoder{}).Encode(&b1, m); err != nil { t.Fatal(err) } noenc := &Encoder{CompressionLevel: NoCompression} if err := noenc.Encode(&b2, m); err != nil { t.Fatal(err) } if b2.Len() <= b1.Len() { t.Error("DefaultCompression encoding was larger than NoCompression encoding") } if _, err := Decode(&b1); err != nil { t.Error("cannot decode DefaultCompression") } if _, err := Decode(&b2); err != nil { t.Error("cannot decode NoCompression") } } func TestSubImage(t *testing.T) { m0 := image.NewRGBA(image.Rect(0, 0, 256, 256)) for y := 0; y < 256; y++ { for x := 0; x < 256; x++ { m0.Set(x, y, color.RGBA{uint8(x), uint8(y), 0, 255}) } } m0 = m0.SubImage(image.Rect(50, 30, 250, 130)).(*image.RGBA) m1, err := encodeDecode(m0) if err != nil { t.Error(err) return } err = diff(m0, m1) if err != nil { t.Error(err) return } } func BenchmarkEncodeGray(b *testing.B) { img := image.NewGray(image.Rect(0, 0, 640, 480)) b.SetBytes(640 * 480 * 1) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { Encode(io.Discard, img) } } type pool struct { b *EncoderBuffer } func (p *pool) Get() *EncoderBuffer { return p.b } func (p *pool) Put(b *EncoderBuffer) { p.b = b } func BenchmarkEncodeGrayWithBufferPool(b *testing.B) { img := image.NewGray(image.Rect(0, 0, 640, 480)) e := Encoder{ BufferPool: &pool{}, } b.SetBytes(640 * 480 * 1) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { e.Encode(io.Discard, img) } } func BenchmarkEncodeNRGBOpaque(b *testing.B) { img := image.NewNRGBA(image.Rect(0, 0, 640, 480)) // Set all pixels to 0xFF alpha to force opaque mode. bo := img.Bounds() for y := bo.Min.Y; y < bo.Max.Y; y++ { for x := bo.Min.X; x < bo.Max.X; x++ { img.Set(x, y, color.NRGBA{0, 0, 0, 255}) } } if !img.Opaque() { b.Fatal("expected image to be opaque") } b.SetBytes(640 * 480 * 4) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { Encode(io.Discard, img) } } func BenchmarkEncodeNRGBA(b *testing.B) { img := image.NewNRGBA(image.Rect(0, 0, 640, 480)) if img.Opaque() { b.Fatal("expected image not to be opaque") } b.SetBytes(640 * 480 * 4) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { Encode(io.Discard, img) } } func BenchmarkEncodePaletted(b *testing.B) { img := image.NewPaletted(image.Rect(0, 0, 640, 480), color.Palette{ color.RGBA{0, 0, 0, 255}, color.RGBA{255, 255, 255, 255}, }) b.SetBytes(640 * 480 * 1) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { Encode(io.Discard, img) } } func BenchmarkEncodeRGBOpaque(b *testing.B) { img := image.NewRGBA(image.Rect(0, 0, 640, 480)) // Set all pixels to 0xFF alpha to force opaque mode. bo := img.Bounds() for y := bo.Min.Y; y < bo.Max.Y; y++ { for x := bo.Min.X; x < bo.Max.X; x++ { img.Set(x, y, color.RGBA{0, 0, 0, 255}) } } if !img.Opaque() { b.Fatal("expected image to be opaque") } b.SetBytes(640 * 480 * 4) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { Encode(io.Discard, img) } } func BenchmarkEncodeRGBA(b *testing.B) { img := image.NewRGBA(image.Rect(0, 0, 640, 480)) if img.Opaque() { b.Fatal("expected image not to be opaque") } b.SetBytes(640 * 480 * 4) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { Encode(io.Discard, img) } }