Black Lives Matter. Support the Equal Justice Initiative.

Text file src/internal/bytealg/indexbyte_ppc64x.s

Documentation: internal/bytealg

     1  // Copyright 2018 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:build ppc64 || ppc64le
     6  // +build ppc64 ppc64le
     7  
     8  #include "go_asm.h"
     9  #include "textflag.h"
    10  
    11  TEXT ·IndexByte(SB),NOSPLIT|NOFRAME,$0-40
    12  	MOVD	b_base+0(FP), R3	// R3 = byte array pointer
    13  	MOVD	b_len+8(FP), R4		// R4 = length
    14  	MOVBZ	c+24(FP), R5		// R5 = byte
    15  	MOVD	$ret+32(FP), R14	// R14 = &ret
    16  	BR	indexbytebody<>(SB)
    17  
    18  TEXT ·IndexByteString(SB),NOSPLIT|NOFRAME,$0-32
    19  	MOVD	s_base+0(FP), R3  // R3 = string
    20  	MOVD	s_len+8(FP), R4	  // R4 = length
    21  	MOVBZ	c+16(FP), R5	  // R5 = byte
    22  	MOVD	$ret+24(FP), R14  // R14 = &ret
    23  	BR	indexbytebody<>(SB)
    24  
    25  TEXT indexbytebody<>(SB),NOSPLIT|NOFRAME,$0-0
    26  	MOVD	R3,R17		// Save base address for calculating the index later.
    27  	RLDICR	$0,R3,$60,R8	// Align address to doubleword boundary in R8.
    28  	RLDIMI	$8,R5,$48,R5	// Replicating the byte across the register.
    29  	ADD	R4,R3,R7	// Last acceptable address in R7.
    30  	DCBT	(R8)		// Prepare cache line.
    31  
    32  	RLDIMI	$16,R5,$32,R5
    33  	CMPU	R4,$32		// Check if it's a small string (≤32 bytes). Those will be processed differently.
    34  	MOVD	$-1,R9
    35  	WORD	$0x54661EB8	// Calculate padding in R6 (rlwinm r6,r3,3,26,28).
    36  	RLDIMI	$32,R5,$0,R5
    37  	MOVD	R7,R10		// Save last acceptable address in R10 for later.
    38  	ADD	$-1,R7,R7
    39  #ifdef GOARCH_ppc64le
    40  	SLD	R6,R9,R9	// Prepare mask for Little Endian
    41  #else
    42  	SRD	R6,R9,R9	// Same for Big Endian
    43  #endif
    44  	BLE	small_string	// Jump to the small string case if it's ≤32 bytes.
    45  
    46  	// If we are 64-byte aligned, branch to qw_align just to get the auxiliary values
    47  	// in V0, V1 and V10, then branch to the preloop.
    48  	ANDCC	$63,R3,R11
    49  	BEQ	CR0,qw_align
    50  	RLDICL	$0,R3,$61,R11
    51  
    52  	MOVD	0(R8),R12	// Load one doubleword from the aligned address in R8.
    53  	CMPB	R12,R5,R3	// Check for a match.
    54  	AND	R9,R3,R3	// Mask bytes below s_base
    55  	RLDICL	$0,R7,$61,R6	// length-1
    56  	RLDICR	$0,R7,$60,R7	// Last doubleword in R7
    57  	CMPU	R3,$0,CR7	// If we have a match, jump to the final computation
    58  	BNE	CR7,done
    59  	ADD	$8,R8,R8
    60  	ADD	$-8,R4,R4
    61  	ADD	R4,R11,R4
    62  
    63  	// Check for quadword alignment
    64  	ANDCC	$15,R8,R11
    65  	BEQ	CR0,qw_align
    66  
    67  	// Not aligned, so handle the next doubleword
    68  	MOVD	0(R8),R12
    69  	CMPB	R12,R5,R3
    70  	CMPU	R3,$0,CR7
    71  	BNE	CR7,done
    72  	ADD	$8,R8,R8
    73  	ADD	$-8,R4,R4
    74  
    75  	// Either quadword aligned or 64-byte at this point. We can use LVX.
    76  qw_align:
    77  
    78  	// Set up auxiliary data for the vectorized algorithm.
    79  	VSPLTISB  $0,V0		// Replicate 0 across V0
    80  	VSPLTISB  $3,V10	// Use V10 as control for VBPERMQ
    81  	MTVRD	  R5,V1
    82  	LVSL	  (R0+R0),V11
    83  	VSLB	  V11,V10,V10
    84  	VSPLTB	  $7,V1,V1	// Replicate byte across V1
    85  	CMPU	  R4, $64	// If len ≤ 64, don't use the vectorized loop
    86  	BLE	  tail
    87  
    88  	// We will load 4 quardwords per iteration in the loop, so check for
    89  	// 64-byte alignment. If 64-byte aligned, then branch to the preloop.
    90  	ANDCC	  $63,R8,R11
    91  	BEQ	  CR0,preloop
    92  
    93  	// Not 64-byte aligned. Load one quadword at a time until aligned.
    94  	LVX	    (R8+R0),V4
    95  	VCMPEQUBCC  V1,V4,V6		// Check for byte in V4
    96  	BNE	    CR6,found_qw_align
    97  	ADD	    $16,R8,R8
    98  	ADD	    $-16,R4,R4
    99  
   100  	ANDCC	    $63,R8,R11
   101  	BEQ	    CR0,preloop
   102  	LVX	    (R8+R0),V4
   103  	VCMPEQUBCC  V1,V4,V6		// Check for byte in V4
   104  	BNE	    CR6,found_qw_align
   105  	ADD	    $16,R8,R8
   106  	ADD	    $-16,R4,R4
   107  
   108  	ANDCC	    $63,R8,R11
   109  	BEQ	    CR0,preloop
   110  	LVX	    (R8+R0),V4
   111  	VCMPEQUBCC  V1,V4,V6		// Check for byte in V4
   112  	BNE	    CR6,found_qw_align
   113  	ADD	    $-16,R4,R4
   114  	ADD	    $16,R8,R8
   115  
   116  	// 64-byte aligned. Prepare for the main loop.
   117  preloop:
   118  	CMPU	R4,$64
   119  	BLE	tail	      // If len ≤ 64, don't use the vectorized loop
   120  
   121  	// We are now aligned to a 64-byte boundary. We will load 4 quadwords
   122  	// per loop iteration. The last doubleword is in R10, so our loop counter
   123  	// starts at (R10-R8)/64.
   124  	SUB	R8,R10,R6
   125  	SRD	$6,R6,R9      // Loop counter in R9
   126  	MOVD	R9,CTR
   127  
   128  	ADD	$-64,R8,R8   // Adjust index for loop entry
   129  	MOVD	$16,R11      // Load offsets for the vector loads
   130  	MOVD	$32,R9
   131  	MOVD	$48,R7
   132  
   133  	// Main loop we will load 64 bytes per iteration
   134  loop:
   135  	ADD	    $64,R8,R8	      // Fuse addi+lvx for performance
   136  	LVX	    (R8+R0),V2	      // Load 4 16-byte vectors
   137  	LVX	    (R8+R11),V3
   138  	VCMPEQUB    V1,V2,V6	      // Look for byte in each vector
   139  	VCMPEQUB    V1,V3,V7
   140  
   141  	LVX	    (R8+R9),V4
   142  	LVX	    (R8+R7),V5
   143  	VCMPEQUB    V1,V4,V8
   144  	VCMPEQUB    V1,V5,V9
   145  
   146  	VOR	    V6,V7,V11	      // Compress the result in a single vector
   147  	VOR	    V8,V9,V12
   148  	VOR	    V11,V12,V13
   149  	VCMPEQUBCC  V0,V13,V14	      // Check for byte
   150  	BGE	    CR6,found
   151  	BC	    16,0,loop	      // bdnz loop
   152  
   153  	// Handle the tailing bytes or R4 ≤ 64
   154  	RLDICL	$0,R6,$58,R4
   155  	ADD	$64,R8,R8
   156  tail:
   157  	CMPU	    R4,$0
   158  	BEQ	    notfound
   159  	LVX	    (R8+R0),V4
   160  	VCMPEQUBCC  V1,V4,V6
   161  	BNE	    CR6,found_qw_align
   162  	ADD	    $16,R8,R8
   163  	CMPU	    R4,$16,CR6
   164  	BLE	    CR6,notfound
   165  	ADD	    $-16,R4,R4
   166  
   167  	LVX	    (R8+R0),V4
   168  	VCMPEQUBCC  V1,V4,V6
   169  	BNE	    CR6,found_qw_align
   170  	ADD	    $16,R8,R8
   171  	CMPU	    R4,$16,CR6
   172  	BLE	    CR6,notfound
   173  	ADD	    $-16,R4,R4
   174  
   175  	LVX	    (R8+R0),V4
   176  	VCMPEQUBCC  V1,V4,V6
   177  	BNE	    CR6,found_qw_align
   178  	ADD	    $16,R8,R8
   179  	CMPU	    R4,$16,CR6
   180  	BLE	    CR6,notfound
   181  	ADD	    $-16,R4,R4
   182  
   183  	LVX	    (R8+R0),V4
   184  	VCMPEQUBCC  V1,V4,V6
   185  	BNE	    CR6,found_qw_align
   186  
   187  notfound:
   188  	MOVD	$-1,R3
   189  	MOVD	R3,(R14)
   190  	RET
   191  
   192  found:
   193  	// We will now compress the results into a single doubleword,
   194  	// so it can be moved to a GPR for the final index calculation.
   195  
   196  	// The bytes in V6-V9 are either 0x00 or 0xFF. So, permute the
   197  	// first bit of each byte into bits 48-63.
   198  	VBPERMQ	  V6,V10,V6
   199  	VBPERMQ	  V7,V10,V7
   200  	VBPERMQ	  V8,V10,V8
   201  	VBPERMQ	  V9,V10,V9
   202  
   203  	// Shift each 16-bit component into its correct position for
   204  	// merging into a single doubleword.
   205  #ifdef GOARCH_ppc64le
   206  	VSLDOI	  $2,V7,V7,V7
   207  	VSLDOI	  $4,V8,V8,V8
   208  	VSLDOI	  $6,V9,V9,V9
   209  #else
   210  	VSLDOI	  $6,V6,V6,V6
   211  	VSLDOI	  $4,V7,V7,V7
   212  	VSLDOI	  $2,V8,V8,V8
   213  #endif
   214  
   215  	// Merge V6-V9 into a single doubleword and move to a GPR.
   216  	VOR	V6,V7,V11
   217  	VOR	V8,V9,V4
   218  	VOR	V4,V11,V4
   219  	MFVRD	V4,R3
   220  
   221  #ifdef GOARCH_ppc64le
   222  	ADD	  $-1,R3,R11
   223  	ANDN	  R3,R11,R11
   224  	POPCNTD	  R11,R11	// Count trailing zeros (Little Endian).
   225  #else
   226  	CNTLZD	R3,R11		// Count leading zeros (Big Endian).
   227  #endif
   228  	ADD	R8,R11,R3	// Calculate byte address
   229  
   230  return:
   231  	SUB	R17,R3
   232  	MOVD	R3,(R14)
   233  	RET
   234  
   235  found_qw_align:
   236  	// Use the same algorithm as above. Compress the result into
   237  	// a single doubleword and move it to a GPR for the final
   238  	// calculation.
   239  	VBPERMQ	  V6,V10,V6
   240  
   241  #ifdef GOARCH_ppc64le
   242  	MFVRD	  V6,R3
   243  	ADD	  $-1,R3,R11
   244  	ANDN	  R3,R11,R11
   245  	POPCNTD	  R11,R11
   246  #else
   247  	VSLDOI	  $6,V6,V6,V6
   248  	MFVRD	  V6,R3
   249  	CNTLZD	  R3,R11
   250  #endif
   251  	ADD	  R8,R11,R3
   252  	CMPU	  R11,R4
   253  	BLT	  return
   254  	BR	  notfound
   255  
   256  done:
   257  	// At this point, R3 has 0xFF in the same position as the byte we are
   258  	// looking for in the doubleword. Use that to calculate the exact index
   259  	// of the byte.
   260  #ifdef GOARCH_ppc64le
   261  	ADD	$-1,R3,R11
   262  	ANDN	R3,R11,R11
   263  	POPCNTD	R11,R11		// Count trailing zeros (Little Endian).
   264  #else
   265  	CNTLZD	R3,R11		// Count leading zeros (Big Endian).
   266  #endif
   267  	CMPU	R8,R7		// Check if we are at the last doubleword.
   268  	SRD	$3,R11		// Convert trailing zeros to bytes.
   269  	ADD	R11,R8,R3
   270  	CMPU	R11,R6,CR7	// If at the last doubleword, check the byte offset.
   271  	BNE	return
   272  	BLE	CR7,return
   273  	BR	notfound
   274  
   275  small_string:
   276  	// We unroll this loop for better performance.
   277  	CMPU	R4,$0		// Check for length=0
   278  	BEQ	notfound
   279  
   280  	MOVD	0(R8),R12	// Load one doubleword from the aligned address in R8.
   281  	CMPB	R12,R5,R3	// Check for a match.
   282  	AND	R9,R3,R3	// Mask bytes below s_base.
   283  	CMPU	R3,$0,CR7	// If we have a match, jump to the final computation.
   284  	RLDICL	$0,R7,$61,R6	// length-1
   285  	RLDICR	$0,R7,$60,R7	// Last doubleword in R7.
   286  	CMPU	R8,R7
   287  	BNE	CR7,done
   288  	BEQ	notfound	// Hit length.
   289  
   290  	MOVDU	8(R8),R12
   291  	CMPB	R12,R5,R3
   292  	CMPU	R3,$0,CR6
   293  	CMPU	R8,R7
   294  	BNE	CR6,done
   295  	BEQ	notfound
   296  
   297  	MOVDU	8(R8),R12
   298  	CMPB	R12,R5,R3
   299  	CMPU	R3,$0,CR6
   300  	CMPU	R8,R7
   301  	BNE	CR6,done
   302  	BEQ	notfound
   303  
   304  	MOVDU	8(R8),R12
   305  	CMPB	R12,R5,R3
   306  	CMPU	R3,$0,CR6
   307  	CMPU	R8,R7
   308  	BNE	CR6,done
   309  	BEQ	notfound
   310  
   311  	MOVDU	8(R8),R12
   312  	CMPB	R12,R5,R3
   313  	CMPU	R3,$0,CR6
   314  	BNE	CR6,done
   315  	BR	notfound
   316  
   317  

View as plain text