// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package profile import ( "fmt" "sort" "strconv" "strings" ) // Merge merges all the profiles in profs into a single Profile. // Returns a new profile independent of the input profiles. The merged // profile is compacted to eliminate unused samples, locations, // functions and mappings. Profiles must have identical profile sample // and period types or the merge will fail. profile.Period of the // resulting profile will be the maximum of all profiles, and // profile.TimeNanos will be the earliest nonzero one. func Merge(srcs []*Profile) (*Profile, error) { if len(srcs) == 0 { return nil, fmt.Errorf("no profiles to merge") } p, err := combineHeaders(srcs) if err != nil { return nil, err } pm := &profileMerger{ p: p, samples: make(map[sampleKey]*Sample, len(srcs[0].Sample)), locations: make(map[locationKey]*Location, len(srcs[0].Location)), functions: make(map[functionKey]*Function, len(srcs[0].Function)), mappings: make(map[mappingKey]*Mapping, len(srcs[0].Mapping)), } for _, src := range srcs { // Clear the profile-specific hash tables pm.locationsByID = make(map[uint64]*Location, len(src.Location)) pm.functionsByID = make(map[uint64]*Function, len(src.Function)) pm.mappingsByID = make(map[uint64]mapInfo, len(src.Mapping)) if len(pm.mappings) == 0 && len(src.Mapping) > 0 { // The Mapping list has the property that the first mapping // represents the main binary. Take the first Mapping we see, // otherwise the operations below will add mappings in an // arbitrary order. pm.mapMapping(src.Mapping[0]) } for _, s := range src.Sample { if !isZeroSample(s) { pm.mapSample(s) } } } for _, s := range p.Sample { if isZeroSample(s) { // If there are any zero samples, re-merge the profile to GC // them. return Merge([]*Profile{p}) } } return p, nil } // Normalize normalizes the source profile by multiplying each value in profile by the // ratio of the sum of the base profile's values of that sample type to the sum of the // source profile's value of that sample type. func (p *Profile) Normalize(pb *Profile) error { if err := p.compatible(pb); err != nil { return err } baseVals := make([]int64, len(p.SampleType)) for _, s := range pb.Sample { for i, v := range s.Value { baseVals[i] += v } } srcVals := make([]int64, len(p.SampleType)) for _, s := range p.Sample { for i, v := range s.Value { srcVals[i] += v } } normScale := make([]float64, len(baseVals)) for i := range baseVals { if srcVals[i] == 0 { normScale[i] = 0.0 } else { normScale[i] = float64(baseVals[i]) / float64(srcVals[i]) } } p.ScaleN(normScale) return nil } func isZeroSample(s *Sample) bool { for _, v := range s.Value { if v != 0 { return false } } return true } type profileMerger struct { p *Profile // Memoization tables within a profile. locationsByID map[uint64]*Location functionsByID map[uint64]*Function mappingsByID map[uint64]mapInfo // Memoization tables for profile entities. samples map[sampleKey]*Sample locations map[locationKey]*Location functions map[functionKey]*Function mappings map[mappingKey]*Mapping } type mapInfo struct { m *Mapping offset int64 } func (pm *profileMerger) mapSample(src *Sample) *Sample { s := &Sample{ Location: make([]*Location, len(src.Location)), Value: make([]int64, len(src.Value)), Label: make(map[string][]string, len(src.Label)), NumLabel: make(map[string][]int64, len(src.NumLabel)), NumUnit: make(map[string][]string, len(src.NumLabel)), } for i, l := range src.Location { s.Location[i] = pm.mapLocation(l) } for k, v := range src.Label { vv := make([]string, len(v)) copy(vv, v) s.Label[k] = vv } for k, v := range src.NumLabel { u := src.NumUnit[k] vv := make([]int64, len(v)) uu := make([]string, len(u)) copy(vv, v) copy(uu, u) s.NumLabel[k] = vv s.NumUnit[k] = uu } // Check memoization table. Must be done on the remapped location to // account for the remapped mapping. Add current values to the // existing sample. k := s.key() if ss, ok := pm.samples[k]; ok { for i, v := range src.Value { ss.Value[i] += v } return ss } copy(s.Value, src.Value) pm.samples[k] = s pm.p.Sample = append(pm.p.Sample, s) return s } // key generates sampleKey to be used as a key for maps. func (sample *Sample) key() sampleKey { ids := make([]string, len(sample.Location)) for i, l := range sample.Location { ids[i] = strconv.FormatUint(l.ID, 16) } labels := make([]string, 0, len(sample.Label)) for k, v := range sample.Label { labels = append(labels, fmt.Sprintf("%q%q", k, v)) } sort.Strings(labels) numlabels := make([]string, 0, len(sample.NumLabel)) for k, v := range sample.NumLabel { numlabels = append(numlabels, fmt.Sprintf("%q%x%x", k, v, sample.NumUnit[k])) } sort.Strings(numlabels) return sampleKey{ strings.Join(ids, "|"), strings.Join(labels, ""), strings.Join(numlabels, ""), } } type sampleKey struct { locations string labels string numlabels string } func (pm *profileMerger) mapLocation(src *Location) *Location { if src == nil { return nil } if l, ok := pm.locationsByID[src.ID]; ok { pm.locationsByID[src.ID] = l return l } mi := pm.mapMapping(src.Mapping) l := &Location{ ID: uint64(len(pm.p.Location) + 1), Mapping: mi.m, Address: uint64(int64(src.Address) + mi.offset), Line: make([]Line, len(src.Line)), IsFolded: src.IsFolded, } for i, ln := range src.Line { l.Line[i] = pm.mapLine(ln) } // Check memoization table. Must be done on the remapped location to // account for the remapped mapping ID. k := l.key() if ll, ok := pm.locations[k]; ok { pm.locationsByID[src.ID] = ll return ll } pm.locationsByID[src.ID] = l pm.locations[k] = l pm.p.Location = append(pm.p.Location, l) return l } // key generates locationKey to be used as a key for maps. func (l *Location) key() locationKey { key := locationKey{ addr: l.Address, isFolded: l.IsFolded, } if l.Mapping != nil { // Normalizes address to handle address space randomization. key.addr -= l.Mapping.Start key.mappingID = l.Mapping.ID } lines := make([]string, len(l.Line)*2) for i, line := range l.Line { if line.Function != nil { lines[i*2] = strconv.FormatUint(line.Function.ID, 16) } lines[i*2+1] = strconv.FormatInt(line.Line, 16) } key.lines = strings.Join(lines, "|") return key } type locationKey struct { addr, mappingID uint64 lines string isFolded bool } func (pm *profileMerger) mapMapping(src *Mapping) mapInfo { if src == nil { return mapInfo{} } if mi, ok := pm.mappingsByID[src.ID]; ok { return mi } // Check memoization tables. mk := src.key() if m, ok := pm.mappings[mk]; ok { mi := mapInfo{m, int64(m.Start) - int64(src.Start)} pm.mappingsByID[src.ID] = mi return mi } m := &Mapping{ ID: uint64(len(pm.p.Mapping) + 1), Start: src.Start, Limit: src.Limit, Offset: src.Offset, File: src.File, BuildID: src.BuildID, HasFunctions: src.HasFunctions, HasFilenames: src.HasFilenames, HasLineNumbers: src.HasLineNumbers, HasInlineFrames: src.HasInlineFrames, } pm.p.Mapping = append(pm.p.Mapping, m) // Update memoization tables. pm.mappings[mk] = m mi := mapInfo{m, 0} pm.mappingsByID[src.ID] = mi return mi } // key generates encoded strings of Mapping to be used as a key for // maps. func (m *Mapping) key() mappingKey { // Normalize addresses to handle address space randomization. // Round up to next 4K boundary to avoid minor discrepancies. const mapsizeRounding = 0x1000 size := m.Limit - m.Start size = size + mapsizeRounding - 1 size = size - (size % mapsizeRounding) key := mappingKey{ size: size, offset: m.Offset, } switch { case m.BuildID != "": key.buildIDOrFile = m.BuildID case m.File != "": key.buildIDOrFile = m.File default: // A mapping containing neither build ID nor file name is a fake mapping. A // key with empty buildIDOrFile is used for fake mappings so that they are // treated as the same mapping during merging. } return key } type mappingKey struct { size, offset uint64 buildIDOrFile string } func (pm *profileMerger) mapLine(src Line) Line { ln := Line{ Function: pm.mapFunction(src.Function), Line: src.Line, } return ln } func (pm *profileMerger) mapFunction(src *Function) *Function { if src == nil { return nil } if f, ok := pm.functionsByID[src.ID]; ok { return f } k := src.key() if f, ok := pm.functions[k]; ok { pm.functionsByID[src.ID] = f return f } f := &Function{ ID: uint64(len(pm.p.Function) + 1), Name: src.Name, SystemName: src.SystemName, Filename: src.Filename, StartLine: src.StartLine, } pm.functions[k] = f pm.functionsByID[src.ID] = f pm.p.Function = append(pm.p.Function, f) return f } // key generates a struct to be used as a key for maps. func (f *Function) key() functionKey { return functionKey{ f.StartLine, f.Name, f.SystemName, f.Filename, } } type functionKey struct { startLine int64 name, systemName, fileName string } // combineHeaders checks that all profiles can be merged and returns // their combined profile. func combineHeaders(srcs []*Profile) (*Profile, error) { for _, s := range srcs[1:] { if err := srcs[0].compatible(s); err != nil { return nil, err } } var timeNanos, durationNanos, period int64 var comments []string seenComments := map[string]bool{} var defaultSampleType string for _, s := range srcs { if timeNanos == 0 || s.TimeNanos < timeNanos { timeNanos = s.TimeNanos } durationNanos += s.DurationNanos if period == 0 || period < s.Period { period = s.Period } for _, c := range s.Comments { if seen := seenComments[c]; !seen { comments = append(comments, c) seenComments[c] = true } } if defaultSampleType == "" { defaultSampleType = s.DefaultSampleType } } p := &Profile{ SampleType: make([]*ValueType, len(srcs[0].SampleType)), DropFrames: srcs[0].DropFrames, KeepFrames: srcs[0].KeepFrames, TimeNanos: timeNanos, DurationNanos: durationNanos, PeriodType: srcs[0].PeriodType, Period: period, Comments: comments, DefaultSampleType: defaultSampleType, } copy(p.SampleType, srcs[0].SampleType) return p, nil } // compatible determines if two profiles can be compared/merged. // returns nil if the profiles are compatible; otherwise an error with // details on the incompatibility. func (p *Profile) compatible(pb *Profile) error { if !equalValueType(p.PeriodType, pb.PeriodType) { return fmt.Errorf("incompatible period types %v and %v", p.PeriodType, pb.PeriodType) } if len(p.SampleType) != len(pb.SampleType) { return fmt.Errorf("incompatible sample types %v and %v", p.SampleType, pb.SampleType) } for i := range p.SampleType { if !equalValueType(p.SampleType[i], pb.SampleType[i]) { return fmt.Errorf("incompatible sample types %v and %v", p.SampleType, pb.SampleType) } } return nil } // equalValueType returns true if the two value types are semantically // equal. It ignores the internal fields used during encode/decode. func equalValueType(st1, st2 *ValueType) bool { return st1.Type == st2.Type && st1.Unit == st2.Unit }