// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package reflectlite implements lightweight version of reflect, not using // any package except for "runtime" and "unsafe". package reflectlite import ( "internal/unsafeheader" "unsafe" ) // Type is the representation of a Go type. // // Not all methods apply to all kinds of types. Restrictions, // if any, are noted in the documentation for each method. // Use the Kind method to find out the kind of type before // calling kind-specific methods. Calling a method // inappropriate to the kind of type causes a run-time panic. // // Type values are comparable, such as with the == operator, // so they can be used as map keys. // Two Type values are equal if they represent identical types. type Type interface { // Methods applicable to all types. // Name returns the type's name within its package for a defined type. // For other (non-defined) types it returns the empty string. Name() string // PkgPath returns a defined type's package path, that is, the import path // that uniquely identifies the package, such as "encoding/base64". // If the type was predeclared (string, error) or not defined (*T, struct{}, // []int, or A where A is an alias for a non-defined type), the package path // will be the empty string. PkgPath() string // Size returns the number of bytes needed to store // a value of the given type; it is analogous to unsafe.Sizeof. Size() uintptr // Kind returns the specific kind of this type. Kind() Kind // Implements reports whether the type implements the interface type u. Implements(u Type) bool // AssignableTo reports whether a value of the type is assignable to type u. AssignableTo(u Type) bool // Comparable reports whether values of this type are comparable. Comparable() bool // String returns a string representation of the type. // The string representation may use shortened package names // (e.g., base64 instead of "encoding/base64") and is not // guaranteed to be unique among types. To test for type identity, // compare the Types directly. String() string // Elem returns a type's element type. // It panics if the type's Kind is not Ptr. Elem() Type common() *rtype uncommon() *uncommonType } /* * These data structures are known to the compiler (../../cmd/internal/reflectdata/reflect.go). * A few are known to ../runtime/type.go to convey to debuggers. * They are also known to ../runtime/type.go. */ // A Kind represents the specific kind of type that a Type represents. // The zero Kind is not a valid kind. type Kind uint const ( Invalid Kind = iota Bool Int Int8 Int16 Int32 Int64 Uint Uint8 Uint16 Uint32 Uint64 Uintptr Float32 Float64 Complex64 Complex128 Array Chan Func Interface Map Ptr Slice String Struct UnsafePointer ) // tflag is used by an rtype to signal what extra type information is // available in the memory directly following the rtype value. // // tflag values must be kept in sync with copies in: // cmd/compile/internal/reflectdata/reflect.go // cmd/link/internal/ld/decodesym.go // runtime/type.go type tflag uint8 const ( // tflagUncommon means that there is a pointer, *uncommonType, // just beyond the outer type structure. // // For example, if t.Kind() == Struct and t.tflag&tflagUncommon != 0, // then t has uncommonType data and it can be accessed as: // // type tUncommon struct { // structType // u uncommonType // } // u := &(*tUncommon)(unsafe.Pointer(t)).u tflagUncommon tflag = 1 << 0 // tflagExtraStar means the name in the str field has an // extraneous '*' prefix. This is because for most types T in // a program, the type *T also exists and reusing the str data // saves binary size. tflagExtraStar tflag = 1 << 1 // tflagNamed means the type has a name. tflagNamed tflag = 1 << 2 // tflagRegularMemory means that equal and hash functions can treat // this type as a single region of t.size bytes. tflagRegularMemory tflag = 1 << 3 ) // rtype is the common implementation of most values. // It is embedded in other struct types. // // rtype must be kept in sync with ../runtime/type.go:/^type._type. type rtype struct { size uintptr ptrdata uintptr // number of bytes in the type that can contain pointers hash uint32 // hash of type; avoids computation in hash tables tflag tflag // extra type information flags align uint8 // alignment of variable with this type fieldAlign uint8 // alignment of struct field with this type kind uint8 // enumeration for C // function for comparing objects of this type // (ptr to object A, ptr to object B) -> ==? equal func(unsafe.Pointer, unsafe.Pointer) bool gcdata *byte // garbage collection data str nameOff // string form ptrToThis typeOff // type for pointer to this type, may be zero } // Method on non-interface type type method struct { name nameOff // name of method mtyp typeOff // method type (without receiver) ifn textOff // fn used in interface call (one-word receiver) tfn textOff // fn used for normal method call } // uncommonType is present only for defined types or types with methods // (if T is a defined type, the uncommonTypes for T and *T have methods). // Using a pointer to this struct reduces the overall size required // to describe a non-defined type with no methods. type uncommonType struct { pkgPath nameOff // import path; empty for built-in types like int, string mcount uint16 // number of methods xcount uint16 // number of exported methods moff uint32 // offset from this uncommontype to [mcount]method _ uint32 // unused } // chanDir represents a channel type's direction. type chanDir int const ( recvDir chanDir = 1 << iota // <-chan sendDir // chan<- bothDir = recvDir | sendDir // chan ) // arrayType represents a fixed array type. type arrayType struct { rtype elem *rtype // array element type slice *rtype // slice type len uintptr } // chanType represents a channel type. type chanType struct { rtype elem *rtype // channel element type dir uintptr // channel direction (chanDir) } // funcType represents a function type. // // A *rtype for each in and out parameter is stored in an array that // directly follows the funcType (and possibly its uncommonType). So // a function type with one method, one input, and one output is: // // struct { // funcType // uncommonType // [2]*rtype // [0] is in, [1] is out // } type funcType struct { rtype inCount uint16 outCount uint16 // top bit is set if last input parameter is ... } // imethod represents a method on an interface type type imethod struct { name nameOff // name of method typ typeOff // .(*FuncType) underneath } // interfaceType represents an interface type. type interfaceType struct { rtype pkgPath name // import path methods []imethod // sorted by hash } // mapType represents a map type. type mapType struct { rtype key *rtype // map key type elem *rtype // map element (value) type bucket *rtype // internal bucket structure // function for hashing keys (ptr to key, seed) -> hash hasher func(unsafe.Pointer, uintptr) uintptr keysize uint8 // size of key slot valuesize uint8 // size of value slot bucketsize uint16 // size of bucket flags uint32 } // ptrType represents a pointer type. type ptrType struct { rtype elem *rtype // pointer element (pointed at) type } // sliceType represents a slice type. type sliceType struct { rtype elem *rtype // slice element type } // Struct field type structField struct { name name // name is always non-empty typ *rtype // type of field offsetEmbed uintptr // byte offset of field<<1 | isEmbedded } func (f *structField) offset() uintptr { return f.offsetEmbed >> 1 } func (f *structField) embedded() bool { return f.offsetEmbed&1 != 0 } // structType represents a struct type. type structType struct { rtype pkgPath name fields []structField // sorted by offset } // name is an encoded type name with optional extra data. // // The first byte is a bit field containing: // // 1<<0 the name is exported // 1<<1 tag data follows the name // 1<<2 pkgPath nameOff follows the name and tag // // The next two bytes are the data length: // // l := uint16(data[1])<<8 | uint16(data[2]) // // Bytes [3:3+l] are the string data. // // If tag data follows then bytes 3+l and 3+l+1 are the tag length, // with the data following. // // If the import path follows, then 4 bytes at the end of // the data form a nameOff. The import path is only set for concrete // methods that are defined in a different package than their type. // // If a name starts with "*", then the exported bit represents // whether the pointed to type is exported. type name struct { bytes *byte } func (n name) data(off int, whySafe string) *byte { return (*byte)(add(unsafe.Pointer(n.bytes), uintptr(off), whySafe)) } func (n name) isExported() bool { return (*n.bytes)&(1<<0) != 0 } func (n name) hasTag() bool { return (*n.bytes)&(1<<1) != 0 } // readVarint parses a varint as encoded by encoding/binary. // It returns the number of encoded bytes and the encoded value. func (n name) readVarint(off int) (int, int) { v := 0 for i := 0; ; i++ { x := *n.data(off+i, "read varint") v += int(x&0x7f) << (7 * i) if x&0x80 == 0 { return i + 1, v } } } func (n name) name() (s string) { if n.bytes == nil { return } i, l := n.readVarint(1) hdr := (*unsafeheader.String)(unsafe.Pointer(&s)) hdr.Data = unsafe.Pointer(n.data(1+i, "non-empty string")) hdr.Len = l return } func (n name) tag() (s string) { if !n.hasTag() { return "" } i, l := n.readVarint(1) i2, l2 := n.readVarint(1 + i + l) hdr := (*unsafeheader.String)(unsafe.Pointer(&s)) hdr.Data = unsafe.Pointer(n.data(1+i+l+i2, "non-empty string")) hdr.Len = l2 return } func (n name) pkgPath() string { if n.bytes == nil || *n.data(0, "name flag field")&(1<<2) == 0 { return "" } i, l := n.readVarint(1) off := 1 + i + l if n.hasTag() { i2, l2 := n.readVarint(off) off += i2 + l2 } var nameOff int32 // Note that this field may not be aligned in memory, // so we cannot use a direct int32 assignment here. copy((*[4]byte)(unsafe.Pointer(&nameOff))[:], (*[4]byte)(unsafe.Pointer(n.data(off, "name offset field")))[:]) pkgPathName := name{(*byte)(resolveTypeOff(unsafe.Pointer(n.bytes), nameOff))} return pkgPathName.name() } /* * The compiler knows the exact layout of all the data structures above. * The compiler does not know about the data structures and methods below. */ const ( kindDirectIface = 1 << 5 kindGCProg = 1 << 6 // Type.gc points to GC program kindMask = (1 << 5) - 1 ) // String returns the name of k. func (k Kind) String() string { if int(k) < len(kindNames) { return kindNames[k] } return kindNames[0] } var kindNames = []string{ Invalid: "invalid", Bool: "bool", Int: "int", Int8: "int8", Int16: "int16", Int32: "int32", Int64: "int64", Uint: "uint", Uint8: "uint8", Uint16: "uint16", Uint32: "uint32", Uint64: "uint64", Uintptr: "uintptr", Float32: "float32", Float64: "float64", Complex64: "complex64", Complex128: "complex128", Array: "array", Chan: "chan", Func: "func", Interface: "interface", Map: "map", Ptr: "ptr", Slice: "slice", String: "string", Struct: "struct", UnsafePointer: "unsafe.Pointer", } func (t *uncommonType) methods() []method { if t.mcount == 0 { return nil } return (*[1 << 16]method)(add(unsafe.Pointer(t), uintptr(t.moff), "t.mcount > 0"))[:t.mcount:t.mcount] } func (t *uncommonType) exportedMethods() []method { if t.xcount == 0 { return nil } return (*[1 << 16]method)(add(unsafe.Pointer(t), uintptr(t.moff), "t.xcount > 0"))[:t.xcount:t.xcount] } // resolveNameOff resolves a name offset from a base pointer. // The (*rtype).nameOff method is a convenience wrapper for this function. // Implemented in the runtime package. func resolveNameOff(ptrInModule unsafe.Pointer, off int32) unsafe.Pointer // resolveTypeOff resolves an *rtype offset from a base type. // The (*rtype).typeOff method is a convenience wrapper for this function. // Implemented in the runtime package. func resolveTypeOff(rtype unsafe.Pointer, off int32) unsafe.Pointer type nameOff int32 // offset to a name type typeOff int32 // offset to an *rtype type textOff int32 // offset from top of text section func (t *rtype) nameOff(off nameOff) name { return name{(*byte)(resolveNameOff(unsafe.Pointer(t), int32(off)))} } func (t *rtype) typeOff(off typeOff) *rtype { return (*rtype)(resolveTypeOff(unsafe.Pointer(t), int32(off))) } func (t *rtype) uncommon() *uncommonType { if t.tflag&tflagUncommon == 0 { return nil } switch t.Kind() { case Struct: return &(*structTypeUncommon)(unsafe.Pointer(t)).u case Ptr: type u struct { ptrType u uncommonType } return &(*u)(unsafe.Pointer(t)).u case Func: type u struct { funcType u uncommonType } return &(*u)(unsafe.Pointer(t)).u case Slice: type u struct { sliceType u uncommonType } return &(*u)(unsafe.Pointer(t)).u case Array: type u struct { arrayType u uncommonType } return &(*u)(unsafe.Pointer(t)).u case Chan: type u struct { chanType u uncommonType } return &(*u)(unsafe.Pointer(t)).u case Map: type u struct { mapType u uncommonType } return &(*u)(unsafe.Pointer(t)).u case Interface: type u struct { interfaceType u uncommonType } return &(*u)(unsafe.Pointer(t)).u default: type u struct { rtype u uncommonType } return &(*u)(unsafe.Pointer(t)).u } } func (t *rtype) String() string { s := t.nameOff(t.str).name() if t.tflag&tflagExtraStar != 0 { return s[1:] } return s } func (t *rtype) Size() uintptr { return t.size } func (t *rtype) Kind() Kind { return Kind(t.kind & kindMask) } func (t *rtype) pointers() bool { return t.ptrdata != 0 } func (t *rtype) common() *rtype { return t } func (t *rtype) exportedMethods() []method { ut := t.uncommon() if ut == nil { return nil } return ut.exportedMethods() } func (t *rtype) NumMethod() int { if t.Kind() == Interface { tt := (*interfaceType)(unsafe.Pointer(t)) return tt.NumMethod() } return len(t.exportedMethods()) } func (t *rtype) PkgPath() string { if t.tflag&tflagNamed == 0 { return "" } ut := t.uncommon() if ut == nil { return "" } return t.nameOff(ut.pkgPath).name() } func (t *rtype) hasName() bool { return t.tflag&tflagNamed != 0 } func (t *rtype) Name() string { if !t.hasName() { return "" } s := t.String() i := len(s) - 1 for i >= 0 && s[i] != '.' { i-- } return s[i+1:] } func (t *rtype) chanDir() chanDir { if t.Kind() != Chan { panic("reflect: chanDir of non-chan type") } tt := (*chanType)(unsafe.Pointer(t)) return chanDir(tt.dir) } func (t *rtype) Elem() Type { switch t.Kind() { case Array: tt := (*arrayType)(unsafe.Pointer(t)) return toType(tt.elem) case Chan: tt := (*chanType)(unsafe.Pointer(t)) return toType(tt.elem) case Map: tt := (*mapType)(unsafe.Pointer(t)) return toType(tt.elem) case Ptr: tt := (*ptrType)(unsafe.Pointer(t)) return toType(tt.elem) case Slice: tt := (*sliceType)(unsafe.Pointer(t)) return toType(tt.elem) } panic("reflect: Elem of invalid type") } func (t *rtype) In(i int) Type { if t.Kind() != Func { panic("reflect: In of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return toType(tt.in()[i]) } func (t *rtype) Key() Type { if t.Kind() != Map { panic("reflect: Key of non-map type") } tt := (*mapType)(unsafe.Pointer(t)) return toType(tt.key) } func (t *rtype) Len() int { if t.Kind() != Array { panic("reflect: Len of non-array type") } tt := (*arrayType)(unsafe.Pointer(t)) return int(tt.len) } func (t *rtype) NumField() int { if t.Kind() != Struct { panic("reflect: NumField of non-struct type") } tt := (*structType)(unsafe.Pointer(t)) return len(tt.fields) } func (t *rtype) NumIn() int { if t.Kind() != Func { panic("reflect: NumIn of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return int(tt.inCount) } func (t *rtype) NumOut() int { if t.Kind() != Func { panic("reflect: NumOut of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return len(tt.out()) } func (t *rtype) Out(i int) Type { if t.Kind() != Func { panic("reflect: Out of non-func type") } tt := (*funcType)(unsafe.Pointer(t)) return toType(tt.out()[i]) } func (t *funcType) in() []*rtype { uadd := unsafe.Sizeof(*t) if t.tflag&tflagUncommon != 0 { uadd += unsafe.Sizeof(uncommonType{}) } if t.inCount == 0 { return nil } return (*[1 << 20]*rtype)(add(unsafe.Pointer(t), uadd, "t.inCount > 0"))[:t.inCount:t.inCount] } func (t *funcType) out() []*rtype { uadd := unsafe.Sizeof(*t) if t.tflag&tflagUncommon != 0 { uadd += unsafe.Sizeof(uncommonType{}) } outCount := t.outCount & (1<<15 - 1) if outCount == 0 { return nil } return (*[1 << 20]*rtype)(add(unsafe.Pointer(t), uadd, "outCount > 0"))[t.inCount : t.inCount+outCount : t.inCount+outCount] } // add returns p+x. // // The whySafe string is ignored, so that the function still inlines // as efficiently as p+x, but all call sites should use the string to // record why the addition is safe, which is to say why the addition // does not cause x to advance to the very end of p's allocation // and therefore point incorrectly at the next block in memory. func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer { return unsafe.Pointer(uintptr(p) + x) } // NumMethod returns the number of interface methods in the type's method set. func (t *interfaceType) NumMethod() int { return len(t.methods) } // TypeOf returns the reflection Type that represents the dynamic type of i. // If i is a nil interface value, TypeOf returns nil. func TypeOf(i interface{}) Type { eface := *(*emptyInterface)(unsafe.Pointer(&i)) return toType(eface.typ) } func (t *rtype) Implements(u Type) bool { if u == nil { panic("reflect: nil type passed to Type.Implements") } if u.Kind() != Interface { panic("reflect: non-interface type passed to Type.Implements") } return implements(u.(*rtype), t) } func (t *rtype) AssignableTo(u Type) bool { if u == nil { panic("reflect: nil type passed to Type.AssignableTo") } uu := u.(*rtype) return directlyAssignable(uu, t) || implements(uu, t) } func (t *rtype) Comparable() bool { return t.equal != nil } // implements reports whether the type V implements the interface type T. func implements(T, V *rtype) bool { if T.Kind() != Interface { return false } t := (*interfaceType)(unsafe.Pointer(T)) if len(t.methods) == 0 { return true } // The same algorithm applies in both cases, but the // method tables for an interface type and a concrete type // are different, so the code is duplicated. // In both cases the algorithm is a linear scan over the two // lists - T's methods and V's methods - simultaneously. // Since method tables are stored in a unique sorted order // (alphabetical, with no duplicate method names), the scan // through V's methods must hit a match for each of T's // methods along the way, or else V does not implement T. // This lets us run the scan in overall linear time instead of // the quadratic time a naive search would require. // See also ../runtime/iface.go. if V.Kind() == Interface { v := (*interfaceType)(unsafe.Pointer(V)) i := 0 for j := 0; j < len(v.methods); j++ { tm := &t.methods[i] tmName := t.nameOff(tm.name) vm := &v.methods[j] vmName := V.nameOff(vm.name) if vmName.name() == tmName.name() && V.typeOff(vm.typ) == t.typeOff(tm.typ) { if !tmName.isExported() { tmPkgPath := tmName.pkgPath() if tmPkgPath == "" { tmPkgPath = t.pkgPath.name() } vmPkgPath := vmName.pkgPath() if vmPkgPath == "" { vmPkgPath = v.pkgPath.name() } if tmPkgPath != vmPkgPath { continue } } if i++; i >= len(t.methods) { return true } } } return false } v := V.uncommon() if v == nil { return false } i := 0 vmethods := v.methods() for j := 0; j < int(v.mcount); j++ { tm := &t.methods[i] tmName := t.nameOff(tm.name) vm := vmethods[j] vmName := V.nameOff(vm.name) if vmName.name() == tmName.name() && V.typeOff(vm.mtyp) == t.typeOff(tm.typ) { if !tmName.isExported() { tmPkgPath := tmName.pkgPath() if tmPkgPath == "" { tmPkgPath = t.pkgPath.name() } vmPkgPath := vmName.pkgPath() if vmPkgPath == "" { vmPkgPath = V.nameOff(v.pkgPath).name() } if tmPkgPath != vmPkgPath { continue } } if i++; i >= len(t.methods) { return true } } } return false } // directlyAssignable reports whether a value x of type V can be directly // assigned (using memmove) to a value of type T. // https://golang.org/doc/go_spec.html#Assignability // Ignoring the interface rules (implemented elsewhere) // and the ideal constant rules (no ideal constants at run time). func directlyAssignable(T, V *rtype) bool { // x's type V is identical to T? if T == V { return true } // Otherwise at least one of T and V must not be defined // and they must have the same kind. if T.hasName() && V.hasName() || T.Kind() != V.Kind() { return false } // x's type T and V must have identical underlying types. return haveIdenticalUnderlyingType(T, V, true) } func haveIdenticalType(T, V Type, cmpTags bool) bool { if cmpTags { return T == V } if T.Name() != V.Name() || T.Kind() != V.Kind() { return false } return haveIdenticalUnderlyingType(T.common(), V.common(), false) } func haveIdenticalUnderlyingType(T, V *rtype, cmpTags bool) bool { if T == V { return true } kind := T.Kind() if kind != V.Kind() { return false } // Non-composite types of equal kind have same underlying type // (the predefined instance of the type). if Bool <= kind && kind <= Complex128 || kind == String || kind == UnsafePointer { return true } // Composite types. switch kind { case Array: return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Chan: // Special case: // x is a bidirectional channel value, T is a channel type, // and x's type V and T have identical element types. if V.chanDir() == bothDir && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) { return true } // Otherwise continue test for identical underlying type. return V.chanDir() == T.chanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Func: t := (*funcType)(unsafe.Pointer(T)) v := (*funcType)(unsafe.Pointer(V)) if t.outCount != v.outCount || t.inCount != v.inCount { return false } for i := 0; i < t.NumIn(); i++ { if !haveIdenticalType(t.In(i), v.In(i), cmpTags) { return false } } for i := 0; i < t.NumOut(); i++ { if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags) { return false } } return true case Interface: t := (*interfaceType)(unsafe.Pointer(T)) v := (*interfaceType)(unsafe.Pointer(V)) if len(t.methods) == 0 && len(v.methods) == 0 { return true } // Might have the same methods but still // need a run time conversion. return false case Map: return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Ptr, Slice: return haveIdenticalType(T.Elem(), V.Elem(), cmpTags) case Struct: t := (*structType)(unsafe.Pointer(T)) v := (*structType)(unsafe.Pointer(V)) if len(t.fields) != len(v.fields) { return false } if t.pkgPath.name() != v.pkgPath.name() { return false } for i := range t.fields { tf := &t.fields[i] vf := &v.fields[i] if tf.name.name() != vf.name.name() { return false } if !haveIdenticalType(tf.typ, vf.typ, cmpTags) { return false } if cmpTags && tf.name.tag() != vf.name.tag() { return false } if tf.offsetEmbed != vf.offsetEmbed { return false } } return true } return false } type structTypeUncommon struct { structType u uncommonType } // toType converts from a *rtype to a Type that can be returned // to the client of package reflect. In gc, the only concern is that // a nil *rtype must be replaced by a nil Type, but in gccgo this // function takes care of ensuring that multiple *rtype for the same // type are coalesced into a single Type. func toType(t *rtype) Type { if t == nil { return nil } return t } // ifaceIndir reports whether t is stored indirectly in an interface value. func ifaceIndir(t *rtype) bool { return t.kind&kindDirectIface == 0 }