Black Lives Matter. Support the Equal Justice Initiative.

Source file src/reflect/value.go

Documentation: reflect

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package reflect
     6  
     7  import (
     8  	"internal/abi"
     9  	"internal/itoa"
    10  	"internal/unsafeheader"
    11  	"math"
    12  	"runtime"
    13  	"unsafe"
    14  )
    15  
    16  const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
    17  
    18  // Value is the reflection interface to a Go value.
    19  //
    20  // Not all methods apply to all kinds of values. Restrictions,
    21  // if any, are noted in the documentation for each method.
    22  // Use the Kind method to find out the kind of value before
    23  // calling kind-specific methods. Calling a method
    24  // inappropriate to the kind of type causes a run time panic.
    25  //
    26  // The zero Value represents no value.
    27  // Its IsValid method returns false, its Kind method returns Invalid,
    28  // its String method returns "<invalid Value>", and all other methods panic.
    29  // Most functions and methods never return an invalid value.
    30  // If one does, its documentation states the conditions explicitly.
    31  //
    32  // A Value can be used concurrently by multiple goroutines provided that
    33  // the underlying Go value can be used concurrently for the equivalent
    34  // direct operations.
    35  //
    36  // To compare two Values, compare the results of the Interface method.
    37  // Using == on two Values does not compare the underlying values
    38  // they represent.
    39  type Value struct {
    40  	// typ holds the type of the value represented by a Value.
    41  	typ *rtype
    42  
    43  	// Pointer-valued data or, if flagIndir is set, pointer to data.
    44  	// Valid when either flagIndir is set or typ.pointers() is true.
    45  	ptr unsafe.Pointer
    46  
    47  	// flag holds metadata about the value.
    48  	// The lowest bits are flag bits:
    49  	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
    50  	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
    51  	//	- flagIndir: val holds a pointer to the data
    52  	//	- flagAddr: v.CanAddr is true (implies flagIndir)
    53  	//	- flagMethod: v is a method value.
    54  	// The next five bits give the Kind of the value.
    55  	// This repeats typ.Kind() except for method values.
    56  	// The remaining 23+ bits give a method number for method values.
    57  	// If flag.kind() != Func, code can assume that flagMethod is unset.
    58  	// If ifaceIndir(typ), code can assume that flagIndir is set.
    59  	flag
    60  
    61  	// A method value represents a curried method invocation
    62  	// like r.Read for some receiver r. The typ+val+flag bits describe
    63  	// the receiver r, but the flag's Kind bits say Func (methods are
    64  	// functions), and the top bits of the flag give the method number
    65  	// in r's type's method table.
    66  }
    67  
    68  type flag uintptr
    69  
    70  const (
    71  	flagKindWidth        = 5 // there are 27 kinds
    72  	flagKindMask    flag = 1<<flagKindWidth - 1
    73  	flagStickyRO    flag = 1 << 5
    74  	flagEmbedRO     flag = 1 << 6
    75  	flagIndir       flag = 1 << 7
    76  	flagAddr        flag = 1 << 8
    77  	flagMethod      flag = 1 << 9
    78  	flagMethodShift      = 10
    79  	flagRO          flag = flagStickyRO | flagEmbedRO
    80  )
    81  
    82  func (f flag) kind() Kind {
    83  	return Kind(f & flagKindMask)
    84  }
    85  
    86  func (f flag) ro() flag {
    87  	if f&flagRO != 0 {
    88  		return flagStickyRO
    89  	}
    90  	return 0
    91  }
    92  
    93  // pointer returns the underlying pointer represented by v.
    94  // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
    95  // if v.Kind() == Ptr, the base type must not be go:notinheap.
    96  func (v Value) pointer() unsafe.Pointer {
    97  	if v.typ.size != ptrSize || !v.typ.pointers() {
    98  		panic("can't call pointer on a non-pointer Value")
    99  	}
   100  	if v.flag&flagIndir != 0 {
   101  		return *(*unsafe.Pointer)(v.ptr)
   102  	}
   103  	return v.ptr
   104  }
   105  
   106  // packEface converts v to the empty interface.
   107  func packEface(v Value) interface{} {
   108  	t := v.typ
   109  	var i interface{}
   110  	e := (*emptyInterface)(unsafe.Pointer(&i))
   111  	// First, fill in the data portion of the interface.
   112  	switch {
   113  	case ifaceIndir(t):
   114  		if v.flag&flagIndir == 0 {
   115  			panic("bad indir")
   116  		}
   117  		// Value is indirect, and so is the interface we're making.
   118  		ptr := v.ptr
   119  		if v.flag&flagAddr != 0 {
   120  			// TODO: pass safe boolean from valueInterface so
   121  			// we don't need to copy if safe==true?
   122  			c := unsafe_New(t)
   123  			typedmemmove(t, c, ptr)
   124  			ptr = c
   125  		}
   126  		e.word = ptr
   127  	case v.flag&flagIndir != 0:
   128  		// Value is indirect, but interface is direct. We need
   129  		// to load the data at v.ptr into the interface data word.
   130  		e.word = *(*unsafe.Pointer)(v.ptr)
   131  	default:
   132  		// Value is direct, and so is the interface.
   133  		e.word = v.ptr
   134  	}
   135  	// Now, fill in the type portion. We're very careful here not
   136  	// to have any operation between the e.word and e.typ assignments
   137  	// that would let the garbage collector observe the partially-built
   138  	// interface value.
   139  	e.typ = t
   140  	return i
   141  }
   142  
   143  // unpackEface converts the empty interface i to a Value.
   144  func unpackEface(i interface{}) Value {
   145  	e := (*emptyInterface)(unsafe.Pointer(&i))
   146  	// NOTE: don't read e.word until we know whether it is really a pointer or not.
   147  	t := e.typ
   148  	if t == nil {
   149  		return Value{}
   150  	}
   151  	f := flag(t.Kind())
   152  	if ifaceIndir(t) {
   153  		f |= flagIndir
   154  	}
   155  	return Value{t, e.word, f}
   156  }
   157  
   158  // A ValueError occurs when a Value method is invoked on
   159  // a Value that does not support it. Such cases are documented
   160  // in the description of each method.
   161  type ValueError struct {
   162  	Method string
   163  	Kind   Kind
   164  }
   165  
   166  func (e *ValueError) Error() string {
   167  	if e.Kind == 0 {
   168  		return "reflect: call of " + e.Method + " on zero Value"
   169  	}
   170  	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
   171  }
   172  
   173  // methodName returns the name of the calling method,
   174  // assumed to be two stack frames above.
   175  func methodName() string {
   176  	pc, _, _, _ := runtime.Caller(2)
   177  	f := runtime.FuncForPC(pc)
   178  	if f == nil {
   179  		return "unknown method"
   180  	}
   181  	return f.Name()
   182  }
   183  
   184  // methodNameSkip is like methodName, but skips another stack frame.
   185  // This is a separate function so that reflect.flag.mustBe will be inlined.
   186  func methodNameSkip() string {
   187  	pc, _, _, _ := runtime.Caller(3)
   188  	f := runtime.FuncForPC(pc)
   189  	if f == nil {
   190  		return "unknown method"
   191  	}
   192  	return f.Name()
   193  }
   194  
   195  // emptyInterface is the header for an interface{} value.
   196  type emptyInterface struct {
   197  	typ  *rtype
   198  	word unsafe.Pointer
   199  }
   200  
   201  // nonEmptyInterface is the header for an interface value with methods.
   202  type nonEmptyInterface struct {
   203  	// see ../runtime/iface.go:/Itab
   204  	itab *struct {
   205  		ityp *rtype // static interface type
   206  		typ  *rtype // dynamic concrete type
   207  		hash uint32 // copy of typ.hash
   208  		_    [4]byte
   209  		fun  [100000]unsafe.Pointer // method table
   210  	}
   211  	word unsafe.Pointer
   212  }
   213  
   214  // mustBe panics if f's kind is not expected.
   215  // Making this a method on flag instead of on Value
   216  // (and embedding flag in Value) means that we can write
   217  // the very clear v.mustBe(Bool) and have it compile into
   218  // v.flag.mustBe(Bool), which will only bother to copy the
   219  // single important word for the receiver.
   220  func (f flag) mustBe(expected Kind) {
   221  	// TODO(mvdan): use f.kind() again once mid-stack inlining gets better
   222  	if Kind(f&flagKindMask) != expected {
   223  		panic(&ValueError{methodName(), f.kind()})
   224  	}
   225  }
   226  
   227  // mustBeExported panics if f records that the value was obtained using
   228  // an unexported field.
   229  func (f flag) mustBeExported() {
   230  	if f == 0 || f&flagRO != 0 {
   231  		f.mustBeExportedSlow()
   232  	}
   233  }
   234  
   235  func (f flag) mustBeExportedSlow() {
   236  	if f == 0 {
   237  		panic(&ValueError{methodNameSkip(), Invalid})
   238  	}
   239  	if f&flagRO != 0 {
   240  		panic("reflect: " + methodNameSkip() + " using value obtained using unexported field")
   241  	}
   242  }
   243  
   244  // mustBeAssignable panics if f records that the value is not assignable,
   245  // which is to say that either it was obtained using an unexported field
   246  // or it is not addressable.
   247  func (f flag) mustBeAssignable() {
   248  	if f&flagRO != 0 || f&flagAddr == 0 {
   249  		f.mustBeAssignableSlow()
   250  	}
   251  }
   252  
   253  func (f flag) mustBeAssignableSlow() {
   254  	if f == 0 {
   255  		panic(&ValueError{methodNameSkip(), Invalid})
   256  	}
   257  	// Assignable if addressable and not read-only.
   258  	if f&flagRO != 0 {
   259  		panic("reflect: " + methodNameSkip() + " using value obtained using unexported field")
   260  	}
   261  	if f&flagAddr == 0 {
   262  		panic("reflect: " + methodNameSkip() + " using unaddressable value")
   263  	}
   264  }
   265  
   266  // Addr returns a pointer value representing the address of v.
   267  // It panics if CanAddr() returns false.
   268  // Addr is typically used to obtain a pointer to a struct field
   269  // or slice element in order to call a method that requires a
   270  // pointer receiver.
   271  func (v Value) Addr() Value {
   272  	if v.flag&flagAddr == 0 {
   273  		panic("reflect.Value.Addr of unaddressable value")
   274  	}
   275  	// Preserve flagRO instead of using v.flag.ro() so that
   276  	// v.Addr().Elem() is equivalent to v (#32772)
   277  	fl := v.flag & flagRO
   278  	return Value{v.typ.ptrTo(), v.ptr, fl | flag(Ptr)}
   279  }
   280  
   281  // Bool returns v's underlying value.
   282  // It panics if v's kind is not Bool.
   283  func (v Value) Bool() bool {
   284  	v.mustBe(Bool)
   285  	return *(*bool)(v.ptr)
   286  }
   287  
   288  // Bytes returns v's underlying value.
   289  // It panics if v's underlying value is not a slice of bytes.
   290  func (v Value) Bytes() []byte {
   291  	v.mustBe(Slice)
   292  	if v.typ.Elem().Kind() != Uint8 {
   293  		panic("reflect.Value.Bytes of non-byte slice")
   294  	}
   295  	// Slice is always bigger than a word; assume flagIndir.
   296  	return *(*[]byte)(v.ptr)
   297  }
   298  
   299  // runes returns v's underlying value.
   300  // It panics if v's underlying value is not a slice of runes (int32s).
   301  func (v Value) runes() []rune {
   302  	v.mustBe(Slice)
   303  	if v.typ.Elem().Kind() != Int32 {
   304  		panic("reflect.Value.Bytes of non-rune slice")
   305  	}
   306  	// Slice is always bigger than a word; assume flagIndir.
   307  	return *(*[]rune)(v.ptr)
   308  }
   309  
   310  // CanAddr reports whether the value's address can be obtained with Addr.
   311  // Such values are called addressable. A value is addressable if it is
   312  // an element of a slice, an element of an addressable array,
   313  // a field of an addressable struct, or the result of dereferencing a pointer.
   314  // If CanAddr returns false, calling Addr will panic.
   315  func (v Value) CanAddr() bool {
   316  	return v.flag&flagAddr != 0
   317  }
   318  
   319  // CanSet reports whether the value of v can be changed.
   320  // A Value can be changed only if it is addressable and was not
   321  // obtained by the use of unexported struct fields.
   322  // If CanSet returns false, calling Set or any type-specific
   323  // setter (e.g., SetBool, SetInt) will panic.
   324  func (v Value) CanSet() bool {
   325  	return v.flag&(flagAddr|flagRO) == flagAddr
   326  }
   327  
   328  // Call calls the function v with the input arguments in.
   329  // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
   330  // Call panics if v's Kind is not Func.
   331  // It returns the output results as Values.
   332  // As in Go, each input argument must be assignable to the
   333  // type of the function's corresponding input parameter.
   334  // If v is a variadic function, Call creates the variadic slice parameter
   335  // itself, copying in the corresponding values.
   336  func (v Value) Call(in []Value) []Value {
   337  	v.mustBe(Func)
   338  	v.mustBeExported()
   339  	return v.call("Call", in)
   340  }
   341  
   342  // CallSlice calls the variadic function v with the input arguments in,
   343  // assigning the slice in[len(in)-1] to v's final variadic argument.
   344  // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
   345  // CallSlice panics if v's Kind is not Func or if v is not variadic.
   346  // It returns the output results as Values.
   347  // As in Go, each input argument must be assignable to the
   348  // type of the function's corresponding input parameter.
   349  func (v Value) CallSlice(in []Value) []Value {
   350  	v.mustBe(Func)
   351  	v.mustBeExported()
   352  	return v.call("CallSlice", in)
   353  }
   354  
   355  var callGC bool // for testing; see TestCallMethodJump
   356  
   357  const debugReflectCall = false
   358  
   359  func (v Value) call(op string, in []Value) []Value {
   360  	// Get function pointer, type.
   361  	t := (*funcType)(unsafe.Pointer(v.typ))
   362  	var (
   363  		fn       unsafe.Pointer
   364  		rcvr     Value
   365  		rcvrtype *rtype
   366  	)
   367  	if v.flag&flagMethod != 0 {
   368  		rcvr = v
   369  		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
   370  	} else if v.flag&flagIndir != 0 {
   371  		fn = *(*unsafe.Pointer)(v.ptr)
   372  	} else {
   373  		fn = v.ptr
   374  	}
   375  
   376  	if fn == nil {
   377  		panic("reflect.Value.Call: call of nil function")
   378  	}
   379  
   380  	isSlice := op == "CallSlice"
   381  	n := t.NumIn()
   382  	isVariadic := t.IsVariadic()
   383  	if isSlice {
   384  		if !isVariadic {
   385  			panic("reflect: CallSlice of non-variadic function")
   386  		}
   387  		if len(in) < n {
   388  			panic("reflect: CallSlice with too few input arguments")
   389  		}
   390  		if len(in) > n {
   391  			panic("reflect: CallSlice with too many input arguments")
   392  		}
   393  	} else {
   394  		if isVariadic {
   395  			n--
   396  		}
   397  		if len(in) < n {
   398  			panic("reflect: Call with too few input arguments")
   399  		}
   400  		if !isVariadic && len(in) > n {
   401  			panic("reflect: Call with too many input arguments")
   402  		}
   403  	}
   404  	for _, x := range in {
   405  		if x.Kind() == Invalid {
   406  			panic("reflect: " + op + " using zero Value argument")
   407  		}
   408  	}
   409  	for i := 0; i < n; i++ {
   410  		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
   411  			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
   412  		}
   413  	}
   414  	if !isSlice && isVariadic {
   415  		// prepare slice for remaining values
   416  		m := len(in) - n
   417  		slice := MakeSlice(t.In(n), m, m)
   418  		elem := t.In(n).Elem()
   419  		for i := 0; i < m; i++ {
   420  			x := in[n+i]
   421  			if xt := x.Type(); !xt.AssignableTo(elem) {
   422  				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
   423  			}
   424  			slice.Index(i).Set(x)
   425  		}
   426  		origIn := in
   427  		in = make([]Value, n+1)
   428  		copy(in[:n], origIn)
   429  		in[n] = slice
   430  	}
   431  
   432  	nin := len(in)
   433  	if nin != t.NumIn() {
   434  		panic("reflect.Value.Call: wrong argument count")
   435  	}
   436  	nout := t.NumOut()
   437  
   438  	// Register argument space.
   439  	var regArgs abi.RegArgs
   440  
   441  	// Compute frame type.
   442  	frametype, framePool, abi := funcLayout(t, rcvrtype)
   443  
   444  	// Allocate a chunk of memory for frame if needed.
   445  	var stackArgs unsafe.Pointer
   446  	if frametype.size != 0 {
   447  		if nout == 0 {
   448  			stackArgs = framePool.Get().(unsafe.Pointer)
   449  		} else {
   450  			// Can't use pool if the function has return values.
   451  			// We will leak pointer to args in ret, so its lifetime is not scoped.
   452  			stackArgs = unsafe_New(frametype)
   453  		}
   454  	}
   455  	frameSize := frametype.size
   456  
   457  	if debugReflectCall {
   458  		println("reflect.call", t.String())
   459  		abi.dump()
   460  	}
   461  
   462  	// Copy inputs into args.
   463  
   464  	// Handle receiver.
   465  	inStart := 0
   466  	if rcvrtype != nil {
   467  		// Guaranteed to only be one word in size,
   468  		// so it will only take up exactly 1 abiStep (either
   469  		// in a register or on the stack).
   470  		switch st := abi.call.steps[0]; st.kind {
   471  		case abiStepStack:
   472  			storeRcvr(rcvr, stackArgs)
   473  		case abiStepIntReg, abiStepPointer:
   474  			// Even pointers can go into the uintptr slot because
   475  			// they'll be kept alive by the Values referenced by
   476  			// this frame. Reflection forces these to be heap-allocated,
   477  			// so we don't need to worry about stack copying.
   478  			storeRcvr(rcvr, unsafe.Pointer(&regArgs.Ints[st.ireg]))
   479  		case abiStepFloatReg:
   480  			storeRcvr(rcvr, unsafe.Pointer(&regArgs.Floats[st.freg]))
   481  		default:
   482  			panic("unknown ABI parameter kind")
   483  		}
   484  		inStart = 1
   485  	}
   486  
   487  	// Handle arguments.
   488  	for i, v := range in {
   489  		v.mustBeExported()
   490  		targ := t.In(i).(*rtype)
   491  		// TODO(mknyszek): Figure out if it's possible to get some
   492  		// scratch space for this assignment check. Previously, it
   493  		// was possible to use space in the argument frame.
   494  		v = v.assignTo("reflect.Value.Call", targ, nil)
   495  	stepsLoop:
   496  		for _, st := range abi.call.stepsForValue(i + inStart) {
   497  			switch st.kind {
   498  			case abiStepStack:
   499  				// Copy values to the "stack."
   500  				addr := add(stackArgs, st.stkOff, "precomputed stack arg offset")
   501  				if v.flag&flagIndir != 0 {
   502  					typedmemmove(targ, addr, v.ptr)
   503  				} else {
   504  					*(*unsafe.Pointer)(addr) = v.ptr
   505  				}
   506  				// There's only one step for a stack-allocated value.
   507  				break stepsLoop
   508  			case abiStepIntReg, abiStepPointer:
   509  				// Copy values to "integer registers."
   510  				if v.flag&flagIndir != 0 {
   511  					offset := add(v.ptr, st.offset, "precomputed value offset")
   512  					memmove(unsafe.Pointer(&regArgs.Ints[st.ireg]), offset, st.size)
   513  				} else {
   514  					if st.kind == abiStepPointer {
   515  						// Duplicate this pointer in the pointer area of the
   516  						// register space. Otherwise, there's the potential for
   517  						// this to be the last reference to v.ptr.
   518  						regArgs.Ptrs[st.ireg] = v.ptr
   519  					}
   520  					regArgs.Ints[st.ireg] = uintptr(v.ptr)
   521  				}
   522  			case abiStepFloatReg:
   523  				// Copy values to "float registers."
   524  				if v.flag&flagIndir == 0 {
   525  					panic("attempted to copy pointer to FP register")
   526  				}
   527  				offset := add(v.ptr, st.offset, "precomputed value offset")
   528  				memmove(unsafe.Pointer(&regArgs.Floats[st.freg]), offset, st.size)
   529  			default:
   530  				panic("unknown ABI part kind")
   531  			}
   532  		}
   533  	}
   534  	// TODO(mknyszek): Remove this when we no longer have
   535  	// caller reserved spill space.
   536  	frameSize = align(frameSize, ptrSize)
   537  	frameSize += abi.spill
   538  
   539  	// Mark pointers in registers for the return path.
   540  	regArgs.ReturnIsPtr = abi.outRegPtrs
   541  
   542  	// Call.
   543  	call(frametype, fn, stackArgs, uint32(frametype.size), uint32(abi.retOffset), uint32(frameSize), &regArgs)
   544  
   545  	// For testing; see TestCallMethodJump.
   546  	if callGC {
   547  		runtime.GC()
   548  	}
   549  
   550  	var ret []Value
   551  	if nout == 0 {
   552  		if stackArgs != nil {
   553  			typedmemclr(frametype, stackArgs)
   554  			framePool.Put(stackArgs)
   555  		}
   556  	} else {
   557  		if stackArgs != nil {
   558  			// Zero the now unused input area of args,
   559  			// because the Values returned by this function contain pointers to the args object,
   560  			// and will thus keep the args object alive indefinitely.
   561  			typedmemclrpartial(frametype, stackArgs, 0, abi.retOffset)
   562  		}
   563  
   564  		// Wrap Values around return values in args.
   565  		ret = make([]Value, nout)
   566  		for i := 0; i < nout; i++ {
   567  			tv := t.Out(i)
   568  			if tv.Size() == 0 {
   569  				// For zero-sized return value, args+off may point to the next object.
   570  				// In this case, return the zero value instead.
   571  				ret[i] = Zero(tv)
   572  				continue
   573  			}
   574  			steps := abi.ret.stepsForValue(i)
   575  			if st := steps[0]; st.kind == abiStepStack {
   576  				// This value is on the stack. If part of a value is stack
   577  				// allocated, the entire value is according to the ABI. So
   578  				// just make an indirection into the allocated frame.
   579  				fl := flagIndir | flag(tv.Kind())
   580  				ret[i] = Value{tv.common(), add(stackArgs, st.stkOff, "tv.Size() != 0"), fl}
   581  				// Note: this does introduce false sharing between results -
   582  				// if any result is live, they are all live.
   583  				// (And the space for the args is live as well, but as we've
   584  				// cleared that space it isn't as big a deal.)
   585  				continue
   586  			}
   587  
   588  			// Handle pointers passed in registers.
   589  			if !ifaceIndir(tv.common()) {
   590  				// Pointer-valued data gets put directly
   591  				// into v.ptr.
   592  				if steps[0].kind != abiStepPointer {
   593  					print("kind=", steps[0].kind, ", type=", tv.String(), "\n")
   594  					panic("mismatch between ABI description and types")
   595  				}
   596  				ret[i] = Value{tv.common(), regArgs.Ptrs[steps[0].ireg], flag(tv.Kind())}
   597  				continue
   598  			}
   599  
   600  			// All that's left is values passed in registers that we need to
   601  			// create space for and copy values back into.
   602  			//
   603  			// TODO(mknyszek): We make a new allocation for each register-allocated
   604  			// value, but previously we could always point into the heap-allocated
   605  			// stack frame. This is a regression that could be fixed by adding
   606  			// additional space to the allocated stack frame and storing the
   607  			// register-allocated return values into the allocated stack frame and
   608  			// referring there in the resulting Value.
   609  			s := unsafe_New(tv.common())
   610  			for _, st := range steps {
   611  				switch st.kind {
   612  				case abiStepIntReg:
   613  					offset := add(s, st.offset, "precomputed value offset")
   614  					memmove(offset, unsafe.Pointer(&regArgs.Ints[st.ireg]), st.size)
   615  				case abiStepPointer:
   616  					s := add(s, st.offset, "precomputed value offset")
   617  					*((*unsafe.Pointer)(s)) = regArgs.Ptrs[st.ireg]
   618  				case abiStepFloatReg:
   619  					offset := add(s, st.offset, "precomputed value offset")
   620  					memmove(offset, unsafe.Pointer(&regArgs.Floats[st.freg]), st.size)
   621  				case abiStepStack:
   622  					panic("register-based return value has stack component")
   623  				default:
   624  					panic("unknown ABI part kind")
   625  				}
   626  			}
   627  			ret[i] = Value{tv.common(), s, flagIndir | flag(tv.Kind())}
   628  		}
   629  	}
   630  
   631  	return ret
   632  }
   633  
   634  // callReflect is the call implementation used by a function
   635  // returned by MakeFunc. In many ways it is the opposite of the
   636  // method Value.call above. The method above converts a call using Values
   637  // into a call of a function with a concrete argument frame, while
   638  // callReflect converts a call of a function with a concrete argument
   639  // frame into a call using Values.
   640  // It is in this file so that it can be next to the call method above.
   641  // The remainder of the MakeFunc implementation is in makefunc.go.
   642  //
   643  // NOTE: This function must be marked as a "wrapper" in the generated code,
   644  // so that the linker can make it work correctly for panic and recover.
   645  // The gc compilers know to do that for the name "reflect.callReflect".
   646  //
   647  // ctxt is the "closure" generated by MakeFunc.
   648  // frame is a pointer to the arguments to that closure on the stack.
   649  // retValid points to a boolean which should be set when the results
   650  // section of frame is set.
   651  //
   652  // regs contains the argument values passed in registers and will contain
   653  // the values returned from ctxt.fn in registers.
   654  func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) {
   655  	if callGC {
   656  		// Call GC upon entry during testing.
   657  		// Getting our stack scanned here is the biggest hazard, because
   658  		// our caller (makeFuncStub) could have failed to place the last
   659  		// pointer to a value in regs' pointer space, in which case it
   660  		// won't be visible to the GC.
   661  		runtime.GC()
   662  	}
   663  	ftyp := ctxt.ftyp
   664  	f := ctxt.fn
   665  
   666  	_, _, abi := funcLayout(ftyp, nil)
   667  
   668  	// Copy arguments into Values.
   669  	ptr := frame
   670  	in := make([]Value, 0, int(ftyp.inCount))
   671  	for i, typ := range ftyp.in() {
   672  		if typ.Size() == 0 {
   673  			in = append(in, Zero(typ))
   674  			continue
   675  		}
   676  		v := Value{typ, nil, flag(typ.Kind())}
   677  		steps := abi.call.stepsForValue(i)
   678  		if st := steps[0]; st.kind == abiStepStack {
   679  			if ifaceIndir(typ) {
   680  				// value cannot be inlined in interface data.
   681  				// Must make a copy, because f might keep a reference to it,
   682  				// and we cannot let f keep a reference to the stack frame
   683  				// after this function returns, not even a read-only reference.
   684  				v.ptr = unsafe_New(typ)
   685  				if typ.size > 0 {
   686  					typedmemmove(typ, v.ptr, add(ptr, st.stkOff, "typ.size > 0"))
   687  				}
   688  				v.flag |= flagIndir
   689  			} else {
   690  				v.ptr = *(*unsafe.Pointer)(add(ptr, st.stkOff, "1-ptr"))
   691  			}
   692  		} else {
   693  			if ifaceIndir(typ) {
   694  				// All that's left is values passed in registers that we need to
   695  				// create space for the values.
   696  				v.flag |= flagIndir
   697  				v.ptr = unsafe_New(typ)
   698  				for _, st := range steps {
   699  					switch st.kind {
   700  					case abiStepIntReg:
   701  						offset := add(v.ptr, st.offset, "precomputed value offset")
   702  						memmove(offset, unsafe.Pointer(&regs.Ints[st.ireg]), st.size)
   703  					case abiStepPointer:
   704  						s := add(v.ptr, st.offset, "precomputed value offset")
   705  						*((*unsafe.Pointer)(s)) = regs.Ptrs[st.ireg]
   706  					case abiStepFloatReg:
   707  						offset := add(v.ptr, st.offset, "precomputed value offset")
   708  						memmove(offset, unsafe.Pointer(&regs.Floats[st.freg]), st.size)
   709  					case abiStepStack:
   710  						panic("register-based return value has stack component")
   711  					default:
   712  						panic("unknown ABI part kind")
   713  					}
   714  				}
   715  			} else {
   716  				// Pointer-valued data gets put directly
   717  				// into v.ptr.
   718  				if steps[0].kind != abiStepPointer {
   719  					print("kind=", steps[0].kind, ", type=", typ.String(), "\n")
   720  					panic("mismatch between ABI description and types")
   721  				}
   722  				v.ptr = regs.Ptrs[steps[0].ireg]
   723  			}
   724  		}
   725  		in = append(in, v)
   726  	}
   727  
   728  	// Call underlying function.
   729  	out := f(in)
   730  	numOut := ftyp.NumOut()
   731  	if len(out) != numOut {
   732  		panic("reflect: wrong return count from function created by MakeFunc")
   733  	}
   734  
   735  	// Copy results back into argument frame and register space.
   736  	if numOut > 0 {
   737  		for i, typ := range ftyp.out() {
   738  			v := out[i]
   739  			if v.typ == nil {
   740  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   741  					" returned zero Value")
   742  			}
   743  			if v.flag&flagRO != 0 {
   744  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   745  					" returned value obtained from unexported field")
   746  			}
   747  			if typ.size == 0 {
   748  				continue
   749  			}
   750  
   751  			// Convert v to type typ if v is assignable to a variable
   752  			// of type t in the language spec.
   753  			// See issue 28761.
   754  			//
   755  			//
   756  			// TODO(mknyszek): In the switch to the register ABI we lost
   757  			// the scratch space here for the register cases (and
   758  			// temporarily for all the cases).
   759  			//
   760  			// If/when this happens, take note of the following:
   761  			//
   762  			// We must clear the destination before calling assignTo,
   763  			// in case assignTo writes (with memory barriers) to the
   764  			// target location used as scratch space. See issue 39541.
   765  			v = v.assignTo("reflect.MakeFunc", typ, nil)
   766  		stepsLoop:
   767  			for _, st := range abi.ret.stepsForValue(i) {
   768  				switch st.kind {
   769  				case abiStepStack:
   770  					// Copy values to the "stack."
   771  					addr := add(ptr, st.stkOff, "precomputed stack arg offset")
   772  					// Do not use write barriers. The stack space used
   773  					// for this call is not adequately zeroed, and we
   774  					// are careful to keep the arguments alive until we
   775  					// return to makeFuncStub's caller.
   776  					if v.flag&flagIndir != 0 {
   777  						memmove(addr, v.ptr, st.size)
   778  					} else {
   779  						// This case must be a pointer type.
   780  						*(*uintptr)(addr) = uintptr(v.ptr)
   781  					}
   782  					// There's only one step for a stack-allocated value.
   783  					break stepsLoop
   784  				case abiStepIntReg, abiStepPointer:
   785  					// Copy values to "integer registers."
   786  					if v.flag&flagIndir != 0 {
   787  						offset := add(v.ptr, st.offset, "precomputed value offset")
   788  						memmove(unsafe.Pointer(&regs.Ints[st.ireg]), offset, st.size)
   789  					} else {
   790  						// Only populate the Ints space on the return path.
   791  						// This is safe because out is kept alive until the
   792  						// end of this function, and the return path through
   793  						// makeFuncStub has no preemption, so these pointers
   794  						// are always visible to the GC.
   795  						regs.Ints[st.ireg] = uintptr(v.ptr)
   796  					}
   797  				case abiStepFloatReg:
   798  					// Copy values to "float registers."
   799  					if v.flag&flagIndir == 0 {
   800  						panic("attempted to copy pointer to FP register")
   801  					}
   802  					offset := add(v.ptr, st.offset, "precomputed value offset")
   803  					memmove(unsafe.Pointer(&regs.Floats[st.freg]), offset, st.size)
   804  				default:
   805  					panic("unknown ABI part kind")
   806  				}
   807  			}
   808  		}
   809  	}
   810  
   811  	// Announce that the return values are valid.
   812  	// After this point the runtime can depend on the return values being valid.
   813  	*retValid = true
   814  
   815  	// We have to make sure that the out slice lives at least until
   816  	// the runtime knows the return values are valid. Otherwise, the
   817  	// return values might not be scanned by anyone during a GC.
   818  	// (out would be dead, and the return slots not yet alive.)
   819  	runtime.KeepAlive(out)
   820  
   821  	// runtime.getArgInfo expects to be able to find ctxt on the
   822  	// stack when it finds our caller, makeFuncStub. Make sure it
   823  	// doesn't get garbage collected.
   824  	runtime.KeepAlive(ctxt)
   825  }
   826  
   827  // methodReceiver returns information about the receiver
   828  // described by v. The Value v may or may not have the
   829  // flagMethod bit set, so the kind cached in v.flag should
   830  // not be used.
   831  // The return value rcvrtype gives the method's actual receiver type.
   832  // The return value t gives the method type signature (without the receiver).
   833  // The return value fn is a pointer to the method code.
   834  func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *rtype, t *funcType, fn unsafe.Pointer) {
   835  	i := methodIndex
   836  	if v.typ.Kind() == Interface {
   837  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
   838  		if uint(i) >= uint(len(tt.methods)) {
   839  			panic("reflect: internal error: invalid method index")
   840  		}
   841  		m := &tt.methods[i]
   842  		if !tt.nameOff(m.name).isExported() {
   843  			panic("reflect: " + op + " of unexported method")
   844  		}
   845  		iface := (*nonEmptyInterface)(v.ptr)
   846  		if iface.itab == nil {
   847  			panic("reflect: " + op + " of method on nil interface value")
   848  		}
   849  		rcvrtype = iface.itab.typ
   850  		fn = unsafe.Pointer(&iface.itab.fun[i])
   851  		t = (*funcType)(unsafe.Pointer(tt.typeOff(m.typ)))
   852  	} else {
   853  		rcvrtype = v.typ
   854  		ms := v.typ.exportedMethods()
   855  		if uint(i) >= uint(len(ms)) {
   856  			panic("reflect: internal error: invalid method index")
   857  		}
   858  		m := ms[i]
   859  		if !v.typ.nameOff(m.name).isExported() {
   860  			panic("reflect: " + op + " of unexported method")
   861  		}
   862  		ifn := v.typ.textOff(m.ifn)
   863  		fn = unsafe.Pointer(&ifn)
   864  		t = (*funcType)(unsafe.Pointer(v.typ.typeOff(m.mtyp)))
   865  	}
   866  	return
   867  }
   868  
   869  // v is a method receiver. Store at p the word which is used to
   870  // encode that receiver at the start of the argument list.
   871  // Reflect uses the "interface" calling convention for
   872  // methods, which always uses one word to record the receiver.
   873  func storeRcvr(v Value, p unsafe.Pointer) {
   874  	t := v.typ
   875  	if t.Kind() == Interface {
   876  		// the interface data word becomes the receiver word
   877  		iface := (*nonEmptyInterface)(v.ptr)
   878  		*(*unsafe.Pointer)(p) = iface.word
   879  	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
   880  		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
   881  	} else {
   882  		*(*unsafe.Pointer)(p) = v.ptr
   883  	}
   884  }
   885  
   886  // align returns the result of rounding x up to a multiple of n.
   887  // n must be a power of two.
   888  func align(x, n uintptr) uintptr {
   889  	return (x + n - 1) &^ (n - 1)
   890  }
   891  
   892  // callMethod is the call implementation used by a function returned
   893  // by makeMethodValue (used by v.Method(i).Interface()).
   894  // It is a streamlined version of the usual reflect call: the caller has
   895  // already laid out the argument frame for us, so we don't have
   896  // to deal with individual Values for each argument.
   897  // It is in this file so that it can be next to the two similar functions above.
   898  // The remainder of the makeMethodValue implementation is in makefunc.go.
   899  //
   900  // NOTE: This function must be marked as a "wrapper" in the generated code,
   901  // so that the linker can make it work correctly for panic and recover.
   902  // The gc compilers know to do that for the name "reflect.callMethod".
   903  //
   904  // ctxt is the "closure" generated by makeVethodValue.
   905  // frame is a pointer to the arguments to that closure on the stack.
   906  // retValid points to a boolean which should be set when the results
   907  // section of frame is set.
   908  //
   909  // regs contains the argument values passed in registers and will contain
   910  // the values returned from ctxt.fn in registers.
   911  func callMethod(ctxt *methodValue, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) {
   912  	rcvr := ctxt.rcvr
   913  	rcvrType, valueFuncType, methodFn := methodReceiver("call", rcvr, ctxt.method)
   914  
   915  	// There are two ABIs at play here.
   916  	//
   917  	// methodValueCall was invoked with the ABI assuming there was no
   918  	// receiver ("value ABI") and that's what frame and regs are holding.
   919  	//
   920  	// Meanwhile, we need to actually call the method with a receiver, which
   921  	// has its own ABI ("method ABI"). Everything that follows is a translation
   922  	// between the two.
   923  	_, _, valueABI := funcLayout(valueFuncType, nil)
   924  	valueFrame, valueRegs := frame, regs
   925  	methodFrameType, methodFramePool, methodABI := funcLayout(valueFuncType, rcvrType)
   926  
   927  	// Make a new frame that is one word bigger so we can store the receiver.
   928  	// This space is used for both arguments and return values.
   929  	methodFrame := methodFramePool.Get().(unsafe.Pointer)
   930  	var methodRegs abi.RegArgs
   931  
   932  	// Deal with the receiver. It's guaranteed to only be one word in size.
   933  	if st := methodABI.call.steps[0]; st.kind == abiStepStack {
   934  		// Only copy the reciever to the stack if the ABI says so.
   935  		// Otherwise, it'll be in a register already.
   936  		storeRcvr(rcvr, methodFrame)
   937  	} else {
   938  		// Put the receiver in a register.
   939  		storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Ints))
   940  	}
   941  
   942  	// Translate the rest of the arguments.
   943  	for i, t := range valueFuncType.in() {
   944  		valueSteps := valueABI.call.stepsForValue(i)
   945  		methodSteps := methodABI.call.stepsForValue(i + 1)
   946  
   947  		// Zero-sized types are trivial: nothing to do.
   948  		if len(valueSteps) == 0 {
   949  			if len(methodSteps) != 0 {
   950  				panic("method ABI and value ABI do not align")
   951  			}
   952  			continue
   953  		}
   954  
   955  		// There are four cases to handle in translating each
   956  		// argument:
   957  		// 1. Stack -> stack translation.
   958  		// 2. Stack -> registers translation.
   959  		// 3. Registers -> stack translation.
   960  		// 4. Registers -> registers translation.
   961  		// TODO(mknyszek): Cases 2 and 3 below only work on little endian
   962  		// architectures. This is OK for now, but this needs to be fixed
   963  		// before supporting the register ABI on big endian architectures.
   964  
   965  		// If the value ABI passes the value on the stack,
   966  		// then the method ABI does too, because it has strictly
   967  		// fewer arguments. Simply copy between the two.
   968  		if vStep := valueSteps[0]; vStep.kind == abiStepStack {
   969  			mStep := methodSteps[0]
   970  			// Handle stack -> stack translation.
   971  			if mStep.kind == abiStepStack {
   972  				if vStep.size != mStep.size {
   973  					panic("method ABI and value ABI do not align")
   974  				}
   975  				typedmemmove(t,
   976  					add(methodFrame, mStep.stkOff, "precomputed stack offset"),
   977  					add(valueFrame, vStep.stkOff, "precomputed stack offset"))
   978  				continue
   979  			}
   980  			// Handle stack -> register translation.
   981  			for _, mStep := range methodSteps {
   982  				from := add(valueFrame, vStep.stkOff+mStep.offset, "precomputed stack offset")
   983  				switch mStep.kind {
   984  				case abiStepPointer:
   985  					// Do the pointer copy directly so we get a write barrier.
   986  					methodRegs.Ptrs[mStep.ireg] = *(*unsafe.Pointer)(from)
   987  					fallthrough // We need to make sure this ends up in Ints, too.
   988  				case abiStepIntReg:
   989  					memmove(unsafe.Pointer(&methodRegs.Ints[mStep.ireg]), from, mStep.size)
   990  				case abiStepFloatReg:
   991  					memmove(unsafe.Pointer(&methodRegs.Floats[mStep.freg]), from, mStep.size)
   992  				default:
   993  					panic("unexpected method step")
   994  				}
   995  			}
   996  			continue
   997  		}
   998  		// Handle register -> stack translation.
   999  		if mStep := methodSteps[0]; mStep.kind == abiStepStack {
  1000  			for _, vStep := range valueSteps {
  1001  				to := add(methodFrame, mStep.stkOff+vStep.offset, "precomputed stack offset")
  1002  				switch vStep.kind {
  1003  				case abiStepPointer:
  1004  					// Do the pointer copy directly so we get a write barrier.
  1005  					*(*unsafe.Pointer)(to) = valueRegs.Ptrs[vStep.ireg]
  1006  				case abiStepIntReg:
  1007  					memmove(to, unsafe.Pointer(&valueRegs.Ints[vStep.ireg]), vStep.size)
  1008  				case abiStepFloatReg:
  1009  					memmove(to, unsafe.Pointer(&valueRegs.Floats[vStep.freg]), vStep.size)
  1010  				default:
  1011  					panic("unexpected value step")
  1012  				}
  1013  			}
  1014  			continue
  1015  		}
  1016  		// Handle register -> register translation.
  1017  		if len(valueSteps) != len(methodSteps) {
  1018  			// Because it's the same type for the value, and it's assigned
  1019  			// to registers both times, it should always take up the same
  1020  			// number of registers for each ABI.
  1021  			panic("method ABI and value ABI don't align")
  1022  		}
  1023  		for i, vStep := range valueSteps {
  1024  			mStep := methodSteps[i]
  1025  			if mStep.kind != vStep.kind {
  1026  				panic("method ABI and value ABI don't align")
  1027  			}
  1028  			switch vStep.kind {
  1029  			case abiStepPointer:
  1030  				// Copy this too, so we get a write barrier.
  1031  				methodRegs.Ptrs[mStep.ireg] = valueRegs.Ptrs[vStep.ireg]
  1032  				fallthrough
  1033  			case abiStepIntReg:
  1034  				methodRegs.Ints[mStep.ireg] = valueRegs.Ints[vStep.ireg]
  1035  			case abiStepFloatReg:
  1036  				methodRegs.Floats[mStep.freg] = valueRegs.Floats[vStep.freg]
  1037  			default:
  1038  				panic("unexpected value step")
  1039  			}
  1040  		}
  1041  	}
  1042  
  1043  	methodFrameSize := methodFrameType.size
  1044  	// TODO(mknyszek): Remove this when we no longer have
  1045  	// caller reserved spill space.
  1046  	methodFrameSize = align(methodFrameSize, ptrSize)
  1047  	methodFrameSize += methodABI.spill
  1048  
  1049  	// Mark pointers in registers for the return path.
  1050  	methodRegs.ReturnIsPtr = methodABI.outRegPtrs
  1051  
  1052  	// Call.
  1053  	// Call copies the arguments from scratch to the stack, calls fn,
  1054  	// and then copies the results back into scratch.
  1055  	call(methodFrameType, methodFn, methodFrame, uint32(methodFrameType.size), uint32(methodABI.retOffset), uint32(methodFrameSize), &methodRegs)
  1056  
  1057  	// Copy return values.
  1058  	//
  1059  	// This is somewhat simpler because both ABIs have an identical
  1060  	// return value ABI (the types are identical). As a result, register
  1061  	// results can simply be copied over. Stack-allocated values are laid
  1062  	// out the same, but are at different offsets from the start of the frame
  1063  	// Ignore any changes to args.
  1064  	// Avoid constructing out-of-bounds pointers if there are no return values.
  1065  	// because the arguments may be laid out differently.
  1066  	if valueRegs != nil {
  1067  		*valueRegs = methodRegs
  1068  	}
  1069  	if retSize := methodFrameType.size - methodABI.retOffset; retSize > 0 {
  1070  		valueRet := add(valueFrame, valueABI.retOffset, "valueFrame's size > retOffset")
  1071  		methodRet := add(methodFrame, methodABI.retOffset, "methodFrame's size > retOffset")
  1072  		// This copies to the stack. Write barriers are not needed.
  1073  		memmove(valueRet, methodRet, retSize)
  1074  	}
  1075  
  1076  	// Tell the runtime it can now depend on the return values
  1077  	// being properly initialized.
  1078  	*retValid = true
  1079  
  1080  	// Clear the scratch space and put it back in the pool.
  1081  	// This must happen after the statement above, so that the return
  1082  	// values will always be scanned by someone.
  1083  	typedmemclr(methodFrameType, methodFrame)
  1084  	methodFramePool.Put(methodFrame)
  1085  
  1086  	// See the comment in callReflect.
  1087  	runtime.KeepAlive(ctxt)
  1088  
  1089  	// Keep valueRegs alive because it may hold live pointer results.
  1090  	// The caller (methodValueCall) has it as a stack object, which is only
  1091  	// scanned when there is a reference to it.
  1092  	runtime.KeepAlive(valueRegs)
  1093  }
  1094  
  1095  // funcName returns the name of f, for use in error messages.
  1096  func funcName(f func([]Value) []Value) string {
  1097  	pc := *(*uintptr)(unsafe.Pointer(&f))
  1098  	rf := runtime.FuncForPC(pc)
  1099  	if rf != nil {
  1100  		return rf.Name()
  1101  	}
  1102  	return "closure"
  1103  }
  1104  
  1105  // Cap returns v's capacity.
  1106  // It panics if v's Kind is not Array, Chan, or Slice.
  1107  func (v Value) Cap() int {
  1108  	k := v.kind()
  1109  	switch k {
  1110  	case Array:
  1111  		return v.typ.Len()
  1112  	case Chan:
  1113  		return chancap(v.pointer())
  1114  	case Slice:
  1115  		// Slice is always bigger than a word; assume flagIndir.
  1116  		return (*unsafeheader.Slice)(v.ptr).Cap
  1117  	}
  1118  	panic(&ValueError{"reflect.Value.Cap", v.kind()})
  1119  }
  1120  
  1121  // Close closes the channel v.
  1122  // It panics if v's Kind is not Chan.
  1123  func (v Value) Close() {
  1124  	v.mustBe(Chan)
  1125  	v.mustBeExported()
  1126  	chanclose(v.pointer())
  1127  }
  1128  
  1129  // Complex returns v's underlying value, as a complex128.
  1130  // It panics if v's Kind is not Complex64 or Complex128
  1131  func (v Value) Complex() complex128 {
  1132  	k := v.kind()
  1133  	switch k {
  1134  	case Complex64:
  1135  		return complex128(*(*complex64)(v.ptr))
  1136  	case Complex128:
  1137  		return *(*complex128)(v.ptr)
  1138  	}
  1139  	panic(&ValueError{"reflect.Value.Complex", v.kind()})
  1140  }
  1141  
  1142  // Elem returns the value that the interface v contains
  1143  // or that the pointer v points to.
  1144  // It panics if v's Kind is not Interface or Ptr.
  1145  // It returns the zero Value if v is nil.
  1146  func (v Value) Elem() Value {
  1147  	k := v.kind()
  1148  	switch k {
  1149  	case Interface:
  1150  		var eface interface{}
  1151  		if v.typ.NumMethod() == 0 {
  1152  			eface = *(*interface{})(v.ptr)
  1153  		} else {
  1154  			eface = (interface{})(*(*interface {
  1155  				M()
  1156  			})(v.ptr))
  1157  		}
  1158  		x := unpackEface(eface)
  1159  		if x.flag != 0 {
  1160  			x.flag |= v.flag.ro()
  1161  		}
  1162  		return x
  1163  	case Ptr:
  1164  		ptr := v.ptr
  1165  		if v.flag&flagIndir != 0 {
  1166  			ptr = *(*unsafe.Pointer)(ptr)
  1167  		}
  1168  		// The returned value's address is v's value.
  1169  		if ptr == nil {
  1170  			return Value{}
  1171  		}
  1172  		tt := (*ptrType)(unsafe.Pointer(v.typ))
  1173  		typ := tt.elem
  1174  		fl := v.flag&flagRO | flagIndir | flagAddr
  1175  		fl |= flag(typ.Kind())
  1176  		return Value{typ, ptr, fl}
  1177  	}
  1178  	panic(&ValueError{"reflect.Value.Elem", v.kind()})
  1179  }
  1180  
  1181  // Field returns the i'th field of the struct v.
  1182  // It panics if v's Kind is not Struct or i is out of range.
  1183  func (v Value) Field(i int) Value {
  1184  	if v.kind() != Struct {
  1185  		panic(&ValueError{"reflect.Value.Field", v.kind()})
  1186  	}
  1187  	tt := (*structType)(unsafe.Pointer(v.typ))
  1188  	if uint(i) >= uint(len(tt.fields)) {
  1189  		panic("reflect: Field index out of range")
  1190  	}
  1191  	field := &tt.fields[i]
  1192  	typ := field.typ
  1193  
  1194  	// Inherit permission bits from v, but clear flagEmbedRO.
  1195  	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
  1196  	// Using an unexported field forces flagRO.
  1197  	if !field.name.isExported() {
  1198  		if field.embedded() {
  1199  			fl |= flagEmbedRO
  1200  		} else {
  1201  			fl |= flagStickyRO
  1202  		}
  1203  	}
  1204  	// Either flagIndir is set and v.ptr points at struct,
  1205  	// or flagIndir is not set and v.ptr is the actual struct data.
  1206  	// In the former case, we want v.ptr + offset.
  1207  	// In the latter case, we must have field.offset = 0,
  1208  	// so v.ptr + field.offset is still the correct address.
  1209  	ptr := add(v.ptr, field.offset(), "same as non-reflect &v.field")
  1210  	return Value{typ, ptr, fl}
  1211  }
  1212  
  1213  // FieldByIndex returns the nested field corresponding to index.
  1214  // It panics if v's Kind is not struct.
  1215  func (v Value) FieldByIndex(index []int) Value {
  1216  	if len(index) == 1 {
  1217  		return v.Field(index[0])
  1218  	}
  1219  	v.mustBe(Struct)
  1220  	for i, x := range index {
  1221  		if i > 0 {
  1222  			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
  1223  				if v.IsNil() {
  1224  					panic("reflect: indirection through nil pointer to embedded struct")
  1225  				}
  1226  				v = v.Elem()
  1227  			}
  1228  		}
  1229  		v = v.Field(x)
  1230  	}
  1231  	return v
  1232  }
  1233  
  1234  // FieldByName returns the struct field with the given name.
  1235  // It returns the zero Value if no field was found.
  1236  // It panics if v's Kind is not struct.
  1237  func (v Value) FieldByName(name string) Value {
  1238  	v.mustBe(Struct)
  1239  	if f, ok := v.typ.FieldByName(name); ok {
  1240  		return v.FieldByIndex(f.Index)
  1241  	}
  1242  	return Value{}
  1243  }
  1244  
  1245  // FieldByNameFunc returns the struct field with a name
  1246  // that satisfies the match function.
  1247  // It panics if v's Kind is not struct.
  1248  // It returns the zero Value if no field was found.
  1249  func (v Value) FieldByNameFunc(match func(string) bool) Value {
  1250  	if f, ok := v.typ.FieldByNameFunc(match); ok {
  1251  		return v.FieldByIndex(f.Index)
  1252  	}
  1253  	return Value{}
  1254  }
  1255  
  1256  // Float returns v's underlying value, as a float64.
  1257  // It panics if v's Kind is not Float32 or Float64
  1258  func (v Value) Float() float64 {
  1259  	k := v.kind()
  1260  	switch k {
  1261  	case Float32:
  1262  		return float64(*(*float32)(v.ptr))
  1263  	case Float64:
  1264  		return *(*float64)(v.ptr)
  1265  	}
  1266  	panic(&ValueError{"reflect.Value.Float", v.kind()})
  1267  }
  1268  
  1269  var uint8Type = TypeOf(uint8(0)).(*rtype)
  1270  
  1271  // Index returns v's i'th element.
  1272  // It panics if v's Kind is not Array, Slice, or String or i is out of range.
  1273  func (v Value) Index(i int) Value {
  1274  	switch v.kind() {
  1275  	case Array:
  1276  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1277  		if uint(i) >= uint(tt.len) {
  1278  			panic("reflect: array index out of range")
  1279  		}
  1280  		typ := tt.elem
  1281  		offset := uintptr(i) * typ.size
  1282  
  1283  		// Either flagIndir is set and v.ptr points at array,
  1284  		// or flagIndir is not set and v.ptr is the actual array data.
  1285  		// In the former case, we want v.ptr + offset.
  1286  		// In the latter case, we must be doing Index(0), so offset = 0,
  1287  		// so v.ptr + offset is still the correct address.
  1288  		val := add(v.ptr, offset, "same as &v[i], i < tt.len")
  1289  		fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
  1290  		return Value{typ, val, fl}
  1291  
  1292  	case Slice:
  1293  		// Element flag same as Elem of Ptr.
  1294  		// Addressable, indirect, possibly read-only.
  1295  		s := (*unsafeheader.Slice)(v.ptr)
  1296  		if uint(i) >= uint(s.Len) {
  1297  			panic("reflect: slice index out of range")
  1298  		}
  1299  		tt := (*sliceType)(unsafe.Pointer(v.typ))
  1300  		typ := tt.elem
  1301  		val := arrayAt(s.Data, i, typ.size, "i < s.Len")
  1302  		fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
  1303  		return Value{typ, val, fl}
  1304  
  1305  	case String:
  1306  		s := (*unsafeheader.String)(v.ptr)
  1307  		if uint(i) >= uint(s.Len) {
  1308  			panic("reflect: string index out of range")
  1309  		}
  1310  		p := arrayAt(s.Data, i, 1, "i < s.Len")
  1311  		fl := v.flag.ro() | flag(Uint8) | flagIndir
  1312  		return Value{uint8Type, p, fl}
  1313  	}
  1314  	panic(&ValueError{"reflect.Value.Index", v.kind()})
  1315  }
  1316  
  1317  // Int returns v's underlying value, as an int64.
  1318  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
  1319  func (v Value) Int() int64 {
  1320  	k := v.kind()
  1321  	p := v.ptr
  1322  	switch k {
  1323  	case Int:
  1324  		return int64(*(*int)(p))
  1325  	case Int8:
  1326  		return int64(*(*int8)(p))
  1327  	case Int16:
  1328  		return int64(*(*int16)(p))
  1329  	case Int32:
  1330  		return int64(*(*int32)(p))
  1331  	case Int64:
  1332  		return *(*int64)(p)
  1333  	}
  1334  	panic(&ValueError{"reflect.Value.Int", v.kind()})
  1335  }
  1336  
  1337  // CanInterface reports whether Interface can be used without panicking.
  1338  func (v Value) CanInterface() bool {
  1339  	if v.flag == 0 {
  1340  		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
  1341  	}
  1342  	return v.flag&flagRO == 0
  1343  }
  1344  
  1345  // Interface returns v's current value as an interface{}.
  1346  // It is equivalent to:
  1347  //	var i interface{} = (v's underlying value)
  1348  // It panics if the Value was obtained by accessing
  1349  // unexported struct fields.
  1350  func (v Value) Interface() (i interface{}) {
  1351  	return valueInterface(v, true)
  1352  }
  1353  
  1354  func valueInterface(v Value, safe bool) interface{} {
  1355  	if v.flag == 0 {
  1356  		panic(&ValueError{"reflect.Value.Interface", Invalid})
  1357  	}
  1358  	if safe && v.flag&flagRO != 0 {
  1359  		// Do not allow access to unexported values via Interface,
  1360  		// because they might be pointers that should not be
  1361  		// writable or methods or function that should not be callable.
  1362  		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
  1363  	}
  1364  	if v.flag&flagMethod != 0 {
  1365  		v = makeMethodValue("Interface", v)
  1366  	}
  1367  
  1368  	if v.kind() == Interface {
  1369  		// Special case: return the element inside the interface.
  1370  		// Empty interface has one layout, all interfaces with
  1371  		// methods have a second layout.
  1372  		if v.NumMethod() == 0 {
  1373  			return *(*interface{})(v.ptr)
  1374  		}
  1375  		return *(*interface {
  1376  			M()
  1377  		})(v.ptr)
  1378  	}
  1379  
  1380  	// TODO: pass safe to packEface so we don't need to copy if safe==true?
  1381  	return packEface(v)
  1382  }
  1383  
  1384  // InterfaceData returns a pair of unspecified uintptr values.
  1385  // It panics if v's Kind is not Interface.
  1386  //
  1387  // In earlier versions of Go, this function returned the interface's
  1388  // value as a uintptr pair. As of Go 1.4, the implementation of
  1389  // interface values precludes any defined use of InterfaceData.
  1390  //
  1391  // Deprecated: The memory representation of interface values is not
  1392  // compatible with InterfaceData.
  1393  func (v Value) InterfaceData() [2]uintptr {
  1394  	v.mustBe(Interface)
  1395  	// We treat this as a read operation, so we allow
  1396  	// it even for unexported data, because the caller
  1397  	// has to import "unsafe" to turn it into something
  1398  	// that can be abused.
  1399  	// Interface value is always bigger than a word; assume flagIndir.
  1400  	return *(*[2]uintptr)(v.ptr)
  1401  }
  1402  
  1403  // IsNil reports whether its argument v is nil. The argument must be
  1404  // a chan, func, interface, map, pointer, or slice value; if it is
  1405  // not, IsNil panics. Note that IsNil is not always equivalent to a
  1406  // regular comparison with nil in Go. For example, if v was created
  1407  // by calling ValueOf with an uninitialized interface variable i,
  1408  // i==nil will be true but v.IsNil will panic as v will be the zero
  1409  // Value.
  1410  func (v Value) IsNil() bool {
  1411  	k := v.kind()
  1412  	switch k {
  1413  	case Chan, Func, Map, Ptr, UnsafePointer:
  1414  		if v.flag&flagMethod != 0 {
  1415  			return false
  1416  		}
  1417  		ptr := v.ptr
  1418  		if v.flag&flagIndir != 0 {
  1419  			ptr = *(*unsafe.Pointer)(ptr)
  1420  		}
  1421  		return ptr == nil
  1422  	case Interface, Slice:
  1423  		// Both interface and slice are nil if first word is 0.
  1424  		// Both are always bigger than a word; assume flagIndir.
  1425  		return *(*unsafe.Pointer)(v.ptr) == nil
  1426  	}
  1427  	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
  1428  }
  1429  
  1430  // IsValid reports whether v represents a value.
  1431  // It returns false if v is the zero Value.
  1432  // If IsValid returns false, all other methods except String panic.
  1433  // Most functions and methods never return an invalid Value.
  1434  // If one does, its documentation states the conditions explicitly.
  1435  func (v Value) IsValid() bool {
  1436  	return v.flag != 0
  1437  }
  1438  
  1439  // IsZero reports whether v is the zero value for its type.
  1440  // It panics if the argument is invalid.
  1441  func (v Value) IsZero() bool {
  1442  	switch v.kind() {
  1443  	case Bool:
  1444  		return !v.Bool()
  1445  	case Int, Int8, Int16, Int32, Int64:
  1446  		return v.Int() == 0
  1447  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1448  		return v.Uint() == 0
  1449  	case Float32, Float64:
  1450  		return math.Float64bits(v.Float()) == 0
  1451  	case Complex64, Complex128:
  1452  		c := v.Complex()
  1453  		return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0
  1454  	case Array:
  1455  		for i := 0; i < v.Len(); i++ {
  1456  			if !v.Index(i).IsZero() {
  1457  				return false
  1458  			}
  1459  		}
  1460  		return true
  1461  	case Chan, Func, Interface, Map, Ptr, Slice, UnsafePointer:
  1462  		return v.IsNil()
  1463  	case String:
  1464  		return v.Len() == 0
  1465  	case Struct:
  1466  		for i := 0; i < v.NumField(); i++ {
  1467  			if !v.Field(i).IsZero() {
  1468  				return false
  1469  			}
  1470  		}
  1471  		return true
  1472  	default:
  1473  		// This should never happens, but will act as a safeguard for
  1474  		// later, as a default value doesn't makes sense here.
  1475  		panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
  1476  	}
  1477  }
  1478  
  1479  // Kind returns v's Kind.
  1480  // If v is the zero Value (IsValid returns false), Kind returns Invalid.
  1481  func (v Value) Kind() Kind {
  1482  	return v.kind()
  1483  }
  1484  
  1485  // Len returns v's length.
  1486  // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
  1487  func (v Value) Len() int {
  1488  	k := v.kind()
  1489  	switch k {
  1490  	case Array:
  1491  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1492  		return int(tt.len)
  1493  	case Chan:
  1494  		return chanlen(v.pointer())
  1495  	case Map:
  1496  		return maplen(v.pointer())
  1497  	case Slice:
  1498  		// Slice is bigger than a word; assume flagIndir.
  1499  		return (*unsafeheader.Slice)(v.ptr).Len
  1500  	case String:
  1501  		// String is bigger than a word; assume flagIndir.
  1502  		return (*unsafeheader.String)(v.ptr).Len
  1503  	}
  1504  	panic(&ValueError{"reflect.Value.Len", v.kind()})
  1505  }
  1506  
  1507  // MapIndex returns the value associated with key in the map v.
  1508  // It panics if v's Kind is not Map.
  1509  // It returns the zero Value if key is not found in the map or if v represents a nil map.
  1510  // As in Go, the key's value must be assignable to the map's key type.
  1511  func (v Value) MapIndex(key Value) Value {
  1512  	v.mustBe(Map)
  1513  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1514  
  1515  	// Do not require key to be exported, so that DeepEqual
  1516  	// and other programs can use all the keys returned by
  1517  	// MapKeys as arguments to MapIndex. If either the map
  1518  	// or the key is unexported, though, the result will be
  1519  	// considered unexported. This is consistent with the
  1520  	// behavior for structs, which allow read but not write
  1521  	// of unexported fields.
  1522  	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
  1523  
  1524  	var k unsafe.Pointer
  1525  	if key.flag&flagIndir != 0 {
  1526  		k = key.ptr
  1527  	} else {
  1528  		k = unsafe.Pointer(&key.ptr)
  1529  	}
  1530  	e := mapaccess(v.typ, v.pointer(), k)
  1531  	if e == nil {
  1532  		return Value{}
  1533  	}
  1534  	typ := tt.elem
  1535  	fl := (v.flag | key.flag).ro()
  1536  	fl |= flag(typ.Kind())
  1537  	return copyVal(typ, fl, e)
  1538  }
  1539  
  1540  // MapKeys returns a slice containing all the keys present in the map,
  1541  // in unspecified order.
  1542  // It panics if v's Kind is not Map.
  1543  // It returns an empty slice if v represents a nil map.
  1544  func (v Value) MapKeys() []Value {
  1545  	v.mustBe(Map)
  1546  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1547  	keyType := tt.key
  1548  
  1549  	fl := v.flag.ro() | flag(keyType.Kind())
  1550  
  1551  	m := v.pointer()
  1552  	mlen := int(0)
  1553  	if m != nil {
  1554  		mlen = maplen(m)
  1555  	}
  1556  	it := mapiterinit(v.typ, m)
  1557  	a := make([]Value, mlen)
  1558  	var i int
  1559  	for i = 0; i < len(a); i++ {
  1560  		key := mapiterkey(it)
  1561  		if key == nil {
  1562  			// Someone deleted an entry from the map since we
  1563  			// called maplen above. It's a data race, but nothing
  1564  			// we can do about it.
  1565  			break
  1566  		}
  1567  		a[i] = copyVal(keyType, fl, key)
  1568  		mapiternext(it)
  1569  	}
  1570  	return a[:i]
  1571  }
  1572  
  1573  // A MapIter is an iterator for ranging over a map.
  1574  // See Value.MapRange.
  1575  type MapIter struct {
  1576  	m  Value
  1577  	it unsafe.Pointer
  1578  }
  1579  
  1580  // Key returns the key of the iterator's current map entry.
  1581  func (it *MapIter) Key() Value {
  1582  	if it.it == nil {
  1583  		panic("MapIter.Key called before Next")
  1584  	}
  1585  	if mapiterkey(it.it) == nil {
  1586  		panic("MapIter.Key called on exhausted iterator")
  1587  	}
  1588  
  1589  	t := (*mapType)(unsafe.Pointer(it.m.typ))
  1590  	ktype := t.key
  1591  	return copyVal(ktype, it.m.flag.ro()|flag(ktype.Kind()), mapiterkey(it.it))
  1592  }
  1593  
  1594  // Value returns the value of the iterator's current map entry.
  1595  func (it *MapIter) Value() Value {
  1596  	if it.it == nil {
  1597  		panic("MapIter.Value called before Next")
  1598  	}
  1599  	if mapiterkey(it.it) == nil {
  1600  		panic("MapIter.Value called on exhausted iterator")
  1601  	}
  1602  
  1603  	t := (*mapType)(unsafe.Pointer(it.m.typ))
  1604  	vtype := t.elem
  1605  	return copyVal(vtype, it.m.flag.ro()|flag(vtype.Kind()), mapiterelem(it.it))
  1606  }
  1607  
  1608  // Next advances the map iterator and reports whether there is another
  1609  // entry. It returns false when the iterator is exhausted; subsequent
  1610  // calls to Key, Value, or Next will panic.
  1611  func (it *MapIter) Next() bool {
  1612  	if it.it == nil {
  1613  		it.it = mapiterinit(it.m.typ, it.m.pointer())
  1614  	} else {
  1615  		if mapiterkey(it.it) == nil {
  1616  			panic("MapIter.Next called on exhausted iterator")
  1617  		}
  1618  		mapiternext(it.it)
  1619  	}
  1620  	return mapiterkey(it.it) != nil
  1621  }
  1622  
  1623  // MapRange returns a range iterator for a map.
  1624  // It panics if v's Kind is not Map.
  1625  //
  1626  // Call Next to advance the iterator, and Key/Value to access each entry.
  1627  // Next returns false when the iterator is exhausted.
  1628  // MapRange follows the same iteration semantics as a range statement.
  1629  //
  1630  // Example:
  1631  //
  1632  //	iter := reflect.ValueOf(m).MapRange()
  1633  // 	for iter.Next() {
  1634  //		k := iter.Key()
  1635  //		v := iter.Value()
  1636  //		...
  1637  //	}
  1638  //
  1639  func (v Value) MapRange() *MapIter {
  1640  	v.mustBe(Map)
  1641  	return &MapIter{m: v}
  1642  }
  1643  
  1644  // copyVal returns a Value containing the map key or value at ptr,
  1645  // allocating a new variable as needed.
  1646  func copyVal(typ *rtype, fl flag, ptr unsafe.Pointer) Value {
  1647  	if ifaceIndir(typ) {
  1648  		// Copy result so future changes to the map
  1649  		// won't change the underlying value.
  1650  		c := unsafe_New(typ)
  1651  		typedmemmove(typ, c, ptr)
  1652  		return Value{typ, c, fl | flagIndir}
  1653  	}
  1654  	return Value{typ, *(*unsafe.Pointer)(ptr), fl}
  1655  }
  1656  
  1657  // Method returns a function value corresponding to v's i'th method.
  1658  // The arguments to a Call on the returned function should not include
  1659  // a receiver; the returned function will always use v as the receiver.
  1660  // Method panics if i is out of range or if v is a nil interface value.
  1661  func (v Value) Method(i int) Value {
  1662  	if v.typ == nil {
  1663  		panic(&ValueError{"reflect.Value.Method", Invalid})
  1664  	}
  1665  	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
  1666  		panic("reflect: Method index out of range")
  1667  	}
  1668  	if v.typ.Kind() == Interface && v.IsNil() {
  1669  		panic("reflect: Method on nil interface value")
  1670  	}
  1671  	fl := v.flag.ro() | (v.flag & flagIndir)
  1672  	fl |= flag(Func)
  1673  	fl |= flag(i)<<flagMethodShift | flagMethod
  1674  	return Value{v.typ, v.ptr, fl}
  1675  }
  1676  
  1677  // NumMethod returns the number of exported methods in the value's method set.
  1678  func (v Value) NumMethod() int {
  1679  	if v.typ == nil {
  1680  		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
  1681  	}
  1682  	if v.flag&flagMethod != 0 {
  1683  		return 0
  1684  	}
  1685  	return v.typ.NumMethod()
  1686  }
  1687  
  1688  // MethodByName returns a function value corresponding to the method
  1689  // of v with the given name.
  1690  // The arguments to a Call on the returned function should not include
  1691  // a receiver; the returned function will always use v as the receiver.
  1692  // It returns the zero Value if no method was found.
  1693  func (v Value) MethodByName(name string) Value {
  1694  	if v.typ == nil {
  1695  		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
  1696  	}
  1697  	if v.flag&flagMethod != 0 {
  1698  		return Value{}
  1699  	}
  1700  	m, ok := v.typ.MethodByName(name)
  1701  	if !ok {
  1702  		return Value{}
  1703  	}
  1704  	return v.Method(m.Index)
  1705  }
  1706  
  1707  // NumField returns the number of fields in the struct v.
  1708  // It panics if v's Kind is not Struct.
  1709  func (v Value) NumField() int {
  1710  	v.mustBe(Struct)
  1711  	tt := (*structType)(unsafe.Pointer(v.typ))
  1712  	return len(tt.fields)
  1713  }
  1714  
  1715  // OverflowComplex reports whether the complex128 x cannot be represented by v's type.
  1716  // It panics if v's Kind is not Complex64 or Complex128.
  1717  func (v Value) OverflowComplex(x complex128) bool {
  1718  	k := v.kind()
  1719  	switch k {
  1720  	case Complex64:
  1721  		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
  1722  	case Complex128:
  1723  		return false
  1724  	}
  1725  	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
  1726  }
  1727  
  1728  // OverflowFloat reports whether the float64 x cannot be represented by v's type.
  1729  // It panics if v's Kind is not Float32 or Float64.
  1730  func (v Value) OverflowFloat(x float64) bool {
  1731  	k := v.kind()
  1732  	switch k {
  1733  	case Float32:
  1734  		return overflowFloat32(x)
  1735  	case Float64:
  1736  		return false
  1737  	}
  1738  	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
  1739  }
  1740  
  1741  func overflowFloat32(x float64) bool {
  1742  	if x < 0 {
  1743  		x = -x
  1744  	}
  1745  	return math.MaxFloat32 < x && x <= math.MaxFloat64
  1746  }
  1747  
  1748  // OverflowInt reports whether the int64 x cannot be represented by v's type.
  1749  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
  1750  func (v Value) OverflowInt(x int64) bool {
  1751  	k := v.kind()
  1752  	switch k {
  1753  	case Int, Int8, Int16, Int32, Int64:
  1754  		bitSize := v.typ.size * 8
  1755  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1756  		return x != trunc
  1757  	}
  1758  	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
  1759  }
  1760  
  1761  // OverflowUint reports whether the uint64 x cannot be represented by v's type.
  1762  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1763  func (v Value) OverflowUint(x uint64) bool {
  1764  	k := v.kind()
  1765  	switch k {
  1766  	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
  1767  		bitSize := v.typ.size * 8
  1768  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1769  		return x != trunc
  1770  	}
  1771  	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
  1772  }
  1773  
  1774  //go:nocheckptr
  1775  // This prevents inlining Value.Pointer when -d=checkptr is enabled,
  1776  // which ensures cmd/compile can recognize unsafe.Pointer(v.Pointer())
  1777  // and make an exception.
  1778  
  1779  // Pointer returns v's value as a uintptr.
  1780  // It returns uintptr instead of unsafe.Pointer so that
  1781  // code using reflect cannot obtain unsafe.Pointers
  1782  // without importing the unsafe package explicitly.
  1783  // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
  1784  //
  1785  // If v's Kind is Func, the returned pointer is an underlying
  1786  // code pointer, but not necessarily enough to identify a
  1787  // single function uniquely. The only guarantee is that the
  1788  // result is zero if and only if v is a nil func Value.
  1789  //
  1790  // If v's Kind is Slice, the returned pointer is to the first
  1791  // element of the slice. If the slice is nil the returned value
  1792  // is 0.  If the slice is empty but non-nil the return value is non-zero.
  1793  func (v Value) Pointer() uintptr {
  1794  	// TODO: deprecate
  1795  	k := v.kind()
  1796  	switch k {
  1797  	case Ptr:
  1798  		if v.typ.ptrdata == 0 {
  1799  			// Handle pointers to go:notinheap types directly,
  1800  			// so we never materialize such pointers as an
  1801  			// unsafe.Pointer. (Such pointers are always indirect.)
  1802  			// See issue 42076.
  1803  			return *(*uintptr)(v.ptr)
  1804  		}
  1805  		fallthrough
  1806  	case Chan, Map, UnsafePointer:
  1807  		return uintptr(v.pointer())
  1808  	case Func:
  1809  		if v.flag&flagMethod != 0 {
  1810  			// As the doc comment says, the returned pointer is an
  1811  			// underlying code pointer but not necessarily enough to
  1812  			// identify a single function uniquely. All method expressions
  1813  			// created via reflect have the same underlying code pointer,
  1814  			// so their Pointers are equal. The function used here must
  1815  			// match the one used in makeMethodValue.
  1816  			f := methodValueCall
  1817  			return **(**uintptr)(unsafe.Pointer(&f))
  1818  		}
  1819  		p := v.pointer()
  1820  		// Non-nil func value points at data block.
  1821  		// First word of data block is actual code.
  1822  		if p != nil {
  1823  			p = *(*unsafe.Pointer)(p)
  1824  		}
  1825  		return uintptr(p)
  1826  
  1827  	case Slice:
  1828  		return (*SliceHeader)(v.ptr).Data
  1829  	}
  1830  	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
  1831  }
  1832  
  1833  // Recv receives and returns a value from the channel v.
  1834  // It panics if v's Kind is not Chan.
  1835  // The receive blocks until a value is ready.
  1836  // The boolean value ok is true if the value x corresponds to a send
  1837  // on the channel, false if it is a zero value received because the channel is closed.
  1838  func (v Value) Recv() (x Value, ok bool) {
  1839  	v.mustBe(Chan)
  1840  	v.mustBeExported()
  1841  	return v.recv(false)
  1842  }
  1843  
  1844  // internal recv, possibly non-blocking (nb).
  1845  // v is known to be a channel.
  1846  func (v Value) recv(nb bool) (val Value, ok bool) {
  1847  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1848  	if ChanDir(tt.dir)&RecvDir == 0 {
  1849  		panic("reflect: recv on send-only channel")
  1850  	}
  1851  	t := tt.elem
  1852  	val = Value{t, nil, flag(t.Kind())}
  1853  	var p unsafe.Pointer
  1854  	if ifaceIndir(t) {
  1855  		p = unsafe_New(t)
  1856  		val.ptr = p
  1857  		val.flag |= flagIndir
  1858  	} else {
  1859  		p = unsafe.Pointer(&val.ptr)
  1860  	}
  1861  	selected, ok := chanrecv(v.pointer(), nb, p)
  1862  	if !selected {
  1863  		val = Value{}
  1864  	}
  1865  	return
  1866  }
  1867  
  1868  // Send sends x on the channel v.
  1869  // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
  1870  // As in Go, x's value must be assignable to the channel's element type.
  1871  func (v Value) Send(x Value) {
  1872  	v.mustBe(Chan)
  1873  	v.mustBeExported()
  1874  	v.send(x, false)
  1875  }
  1876  
  1877  // internal send, possibly non-blocking.
  1878  // v is known to be a channel.
  1879  func (v Value) send(x Value, nb bool) (selected bool) {
  1880  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1881  	if ChanDir(tt.dir)&SendDir == 0 {
  1882  		panic("reflect: send on recv-only channel")
  1883  	}
  1884  	x.mustBeExported()
  1885  	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
  1886  	var p unsafe.Pointer
  1887  	if x.flag&flagIndir != 0 {
  1888  		p = x.ptr
  1889  	} else {
  1890  		p = unsafe.Pointer(&x.ptr)
  1891  	}
  1892  	return chansend(v.pointer(), p, nb)
  1893  }
  1894  
  1895  // Set assigns x to the value v.
  1896  // It panics if CanSet returns false.
  1897  // As in Go, x's value must be assignable to v's type.
  1898  func (v Value) Set(x Value) {
  1899  	v.mustBeAssignable()
  1900  	x.mustBeExported() // do not let unexported x leak
  1901  	var target unsafe.Pointer
  1902  	if v.kind() == Interface {
  1903  		target = v.ptr
  1904  	}
  1905  	x = x.assignTo("reflect.Set", v.typ, target)
  1906  	if x.flag&flagIndir != 0 {
  1907  		if x.ptr == unsafe.Pointer(&zeroVal[0]) {
  1908  			typedmemclr(v.typ, v.ptr)
  1909  		} else {
  1910  			typedmemmove(v.typ, v.ptr, x.ptr)
  1911  		}
  1912  	} else {
  1913  		*(*unsafe.Pointer)(v.ptr) = x.ptr
  1914  	}
  1915  }
  1916  
  1917  // SetBool sets v's underlying value.
  1918  // It panics if v's Kind is not Bool or if CanSet() is false.
  1919  func (v Value) SetBool(x bool) {
  1920  	v.mustBeAssignable()
  1921  	v.mustBe(Bool)
  1922  	*(*bool)(v.ptr) = x
  1923  }
  1924  
  1925  // SetBytes sets v's underlying value.
  1926  // It panics if v's underlying value is not a slice of bytes.
  1927  func (v Value) SetBytes(x []byte) {
  1928  	v.mustBeAssignable()
  1929  	v.mustBe(Slice)
  1930  	if v.typ.Elem().Kind() != Uint8 {
  1931  		panic("reflect.Value.SetBytes of non-byte slice")
  1932  	}
  1933  	*(*[]byte)(v.ptr) = x
  1934  }
  1935  
  1936  // setRunes sets v's underlying value.
  1937  // It panics if v's underlying value is not a slice of runes (int32s).
  1938  func (v Value) setRunes(x []rune) {
  1939  	v.mustBeAssignable()
  1940  	v.mustBe(Slice)
  1941  	if v.typ.Elem().Kind() != Int32 {
  1942  		panic("reflect.Value.setRunes of non-rune slice")
  1943  	}
  1944  	*(*[]rune)(v.ptr) = x
  1945  }
  1946  
  1947  // SetComplex sets v's underlying value to x.
  1948  // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
  1949  func (v Value) SetComplex(x complex128) {
  1950  	v.mustBeAssignable()
  1951  	switch k := v.kind(); k {
  1952  	default:
  1953  		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
  1954  	case Complex64:
  1955  		*(*complex64)(v.ptr) = complex64(x)
  1956  	case Complex128:
  1957  		*(*complex128)(v.ptr) = x
  1958  	}
  1959  }
  1960  
  1961  // SetFloat sets v's underlying value to x.
  1962  // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
  1963  func (v Value) SetFloat(x float64) {
  1964  	v.mustBeAssignable()
  1965  	switch k := v.kind(); k {
  1966  	default:
  1967  		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
  1968  	case Float32:
  1969  		*(*float32)(v.ptr) = float32(x)
  1970  	case Float64:
  1971  		*(*float64)(v.ptr) = x
  1972  	}
  1973  }
  1974  
  1975  // SetInt sets v's underlying value to x.
  1976  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
  1977  func (v Value) SetInt(x int64) {
  1978  	v.mustBeAssignable()
  1979  	switch k := v.kind(); k {
  1980  	default:
  1981  		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
  1982  	case Int:
  1983  		*(*int)(v.ptr) = int(x)
  1984  	case Int8:
  1985  		*(*int8)(v.ptr) = int8(x)
  1986  	case Int16:
  1987  		*(*int16)(v.ptr) = int16(x)
  1988  	case Int32:
  1989  		*(*int32)(v.ptr) = int32(x)
  1990  	case Int64:
  1991  		*(*int64)(v.ptr) = x
  1992  	}
  1993  }
  1994  
  1995  // SetLen sets v's length to n.
  1996  // It panics if v's Kind is not Slice or if n is negative or
  1997  // greater than the capacity of the slice.
  1998  func (v Value) SetLen(n int) {
  1999  	v.mustBeAssignable()
  2000  	v.mustBe(Slice)
  2001  	s := (*unsafeheader.Slice)(v.ptr)
  2002  	if uint(n) > uint(s.Cap) {
  2003  		panic("reflect: slice length out of range in SetLen")
  2004  	}
  2005  	s.Len = n
  2006  }
  2007  
  2008  // SetCap sets v's capacity to n.
  2009  // It panics if v's Kind is not Slice or if n is smaller than the length or
  2010  // greater than the capacity of the slice.
  2011  func (v Value) SetCap(n int) {
  2012  	v.mustBeAssignable()
  2013  	v.mustBe(Slice)
  2014  	s := (*unsafeheader.Slice)(v.ptr)
  2015  	if n < s.Len || n > s.Cap {
  2016  		panic("reflect: slice capacity out of range in SetCap")
  2017  	}
  2018  	s.Cap = n
  2019  }
  2020  
  2021  // SetMapIndex sets the element associated with key in the map v to elem.
  2022  // It panics if v's Kind is not Map.
  2023  // If elem is the zero Value, SetMapIndex deletes the key from the map.
  2024  // Otherwise if v holds a nil map, SetMapIndex will panic.
  2025  // As in Go, key's elem must be assignable to the map's key type,
  2026  // and elem's value must be assignable to the map's elem type.
  2027  func (v Value) SetMapIndex(key, elem Value) {
  2028  	v.mustBe(Map)
  2029  	v.mustBeExported()
  2030  	key.mustBeExported()
  2031  	tt := (*mapType)(unsafe.Pointer(v.typ))
  2032  	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
  2033  	var k unsafe.Pointer
  2034  	if key.flag&flagIndir != 0 {
  2035  		k = key.ptr
  2036  	} else {
  2037  		k = unsafe.Pointer(&key.ptr)
  2038  	}
  2039  	if elem.typ == nil {
  2040  		mapdelete(v.typ, v.pointer(), k)
  2041  		return
  2042  	}
  2043  	elem.mustBeExported()
  2044  	elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  2045  	var e unsafe.Pointer
  2046  	if elem.flag&flagIndir != 0 {
  2047  		e = elem.ptr
  2048  	} else {
  2049  		e = unsafe.Pointer(&elem.ptr)
  2050  	}
  2051  	mapassign(v.typ, v.pointer(), k, e)
  2052  }
  2053  
  2054  // SetUint sets v's underlying value to x.
  2055  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
  2056  func (v Value) SetUint(x uint64) {
  2057  	v.mustBeAssignable()
  2058  	switch k := v.kind(); k {
  2059  	default:
  2060  		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
  2061  	case Uint:
  2062  		*(*uint)(v.ptr) = uint(x)
  2063  	case Uint8:
  2064  		*(*uint8)(v.ptr) = uint8(x)
  2065  	case Uint16:
  2066  		*(*uint16)(v.ptr) = uint16(x)
  2067  	case Uint32:
  2068  		*(*uint32)(v.ptr) = uint32(x)
  2069  	case Uint64:
  2070  		*(*uint64)(v.ptr) = x
  2071  	case Uintptr:
  2072  		*(*uintptr)(v.ptr) = uintptr(x)
  2073  	}
  2074  }
  2075  
  2076  // SetPointer sets the unsafe.Pointer value v to x.
  2077  // It panics if v's Kind is not UnsafePointer.
  2078  func (v Value) SetPointer(x unsafe.Pointer) {
  2079  	v.mustBeAssignable()
  2080  	v.mustBe(UnsafePointer)
  2081  	*(*unsafe.Pointer)(v.ptr) = x
  2082  }
  2083  
  2084  // SetString sets v's underlying value to x.
  2085  // It panics if v's Kind is not String or if CanSet() is false.
  2086  func (v Value) SetString(x string) {
  2087  	v.mustBeAssignable()
  2088  	v.mustBe(String)
  2089  	*(*string)(v.ptr) = x
  2090  }
  2091  
  2092  // Slice returns v[i:j].
  2093  // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
  2094  // or if the indexes are out of bounds.
  2095  func (v Value) Slice(i, j int) Value {
  2096  	var (
  2097  		cap  int
  2098  		typ  *sliceType
  2099  		base unsafe.Pointer
  2100  	)
  2101  	switch kind := v.kind(); kind {
  2102  	default:
  2103  		panic(&ValueError{"reflect.Value.Slice", v.kind()})
  2104  
  2105  	case Array:
  2106  		if v.flag&flagAddr == 0 {
  2107  			panic("reflect.Value.Slice: slice of unaddressable array")
  2108  		}
  2109  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  2110  		cap = int(tt.len)
  2111  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  2112  		base = v.ptr
  2113  
  2114  	case Slice:
  2115  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  2116  		s := (*unsafeheader.Slice)(v.ptr)
  2117  		base = s.Data
  2118  		cap = s.Cap
  2119  
  2120  	case String:
  2121  		s := (*unsafeheader.String)(v.ptr)
  2122  		if i < 0 || j < i || j > s.Len {
  2123  			panic("reflect.Value.Slice: string slice index out of bounds")
  2124  		}
  2125  		var t unsafeheader.String
  2126  		if i < s.Len {
  2127  			t = unsafeheader.String{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i}
  2128  		}
  2129  		return Value{v.typ, unsafe.Pointer(&t), v.flag}
  2130  	}
  2131  
  2132  	if i < 0 || j < i || j > cap {
  2133  		panic("reflect.Value.Slice: slice index out of bounds")
  2134  	}
  2135  
  2136  	// Declare slice so that gc can see the base pointer in it.
  2137  	var x []unsafe.Pointer
  2138  
  2139  	// Reinterpret as *unsafeheader.Slice to edit.
  2140  	s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
  2141  	s.Len = j - i
  2142  	s.Cap = cap - i
  2143  	if cap-i > 0 {
  2144  		s.Data = arrayAt(base, i, typ.elem.Size(), "i < cap")
  2145  	} else {
  2146  		// do not advance pointer, to avoid pointing beyond end of slice
  2147  		s.Data = base
  2148  	}
  2149  
  2150  	fl := v.flag.ro() | flagIndir | flag(Slice)
  2151  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  2152  }
  2153  
  2154  // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
  2155  // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
  2156  // or if the indexes are out of bounds.
  2157  func (v Value) Slice3(i, j, k int) Value {
  2158  	var (
  2159  		cap  int
  2160  		typ  *sliceType
  2161  		base unsafe.Pointer
  2162  	)
  2163  	switch kind := v.kind(); kind {
  2164  	default:
  2165  		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
  2166  
  2167  	case Array:
  2168  		if v.flag&flagAddr == 0 {
  2169  			panic("reflect.Value.Slice3: slice of unaddressable array")
  2170  		}
  2171  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  2172  		cap = int(tt.len)
  2173  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  2174  		base = v.ptr
  2175  
  2176  	case Slice:
  2177  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  2178  		s := (*unsafeheader.Slice)(v.ptr)
  2179  		base = s.Data
  2180  		cap = s.Cap
  2181  	}
  2182  
  2183  	if i < 0 || j < i || k < j || k > cap {
  2184  		panic("reflect.Value.Slice3: slice index out of bounds")
  2185  	}
  2186  
  2187  	// Declare slice so that the garbage collector
  2188  	// can see the base pointer in it.
  2189  	var x []unsafe.Pointer
  2190  
  2191  	// Reinterpret as *unsafeheader.Slice to edit.
  2192  	s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
  2193  	s.Len = j - i
  2194  	s.Cap = k - i
  2195  	if k-i > 0 {
  2196  		s.Data = arrayAt(base, i, typ.elem.Size(), "i < k <= cap")
  2197  	} else {
  2198  		// do not advance pointer, to avoid pointing beyond end of slice
  2199  		s.Data = base
  2200  	}
  2201  
  2202  	fl := v.flag.ro() | flagIndir | flag(Slice)
  2203  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  2204  }
  2205  
  2206  // String returns the string v's underlying value, as a string.
  2207  // String is a special case because of Go's String method convention.
  2208  // Unlike the other getters, it does not panic if v's Kind is not String.
  2209  // Instead, it returns a string of the form "<T value>" where T is v's type.
  2210  // The fmt package treats Values specially. It does not call their String
  2211  // method implicitly but instead prints the concrete values they hold.
  2212  func (v Value) String() string {
  2213  	switch k := v.kind(); k {
  2214  	case Invalid:
  2215  		return "<invalid Value>"
  2216  	case String:
  2217  		return *(*string)(v.ptr)
  2218  	}
  2219  	// If you call String on a reflect.Value of other type, it's better to
  2220  	// print something than to panic. Useful in debugging.
  2221  	return "<" + v.Type().String() + " Value>"
  2222  }
  2223  
  2224  // TryRecv attempts to receive a value from the channel v but will not block.
  2225  // It panics if v's Kind is not Chan.
  2226  // If the receive delivers a value, x is the transferred value and ok is true.
  2227  // If the receive cannot finish without blocking, x is the zero Value and ok is false.
  2228  // If the channel is closed, x is the zero value for the channel's element type and ok is false.
  2229  func (v Value) TryRecv() (x Value, ok bool) {
  2230  	v.mustBe(Chan)
  2231  	v.mustBeExported()
  2232  	return v.recv(true)
  2233  }
  2234  
  2235  // TrySend attempts to send x on the channel v but will not block.
  2236  // It panics if v's Kind is not Chan.
  2237  // It reports whether the value was sent.
  2238  // As in Go, x's value must be assignable to the channel's element type.
  2239  func (v Value) TrySend(x Value) bool {
  2240  	v.mustBe(Chan)
  2241  	v.mustBeExported()
  2242  	return v.send(x, true)
  2243  }
  2244  
  2245  // Type returns v's type.
  2246  func (v Value) Type() Type {
  2247  	f := v.flag
  2248  	if f == 0 {
  2249  		panic(&ValueError{"reflect.Value.Type", Invalid})
  2250  	}
  2251  	if f&flagMethod == 0 {
  2252  		// Easy case
  2253  		return v.typ
  2254  	}
  2255  
  2256  	// Method value.
  2257  	// v.typ describes the receiver, not the method type.
  2258  	i := int(v.flag) >> flagMethodShift
  2259  	if v.typ.Kind() == Interface {
  2260  		// Method on interface.
  2261  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
  2262  		if uint(i) >= uint(len(tt.methods)) {
  2263  			panic("reflect: internal error: invalid method index")
  2264  		}
  2265  		m := &tt.methods[i]
  2266  		return v.typ.typeOff(m.typ)
  2267  	}
  2268  	// Method on concrete type.
  2269  	ms := v.typ.exportedMethods()
  2270  	if uint(i) >= uint(len(ms)) {
  2271  		panic("reflect: internal error: invalid method index")
  2272  	}
  2273  	m := ms[i]
  2274  	return v.typ.typeOff(m.mtyp)
  2275  }
  2276  
  2277  // Uint returns v's underlying value, as a uint64.
  2278  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  2279  func (v Value) Uint() uint64 {
  2280  	k := v.kind()
  2281  	p := v.ptr
  2282  	switch k {
  2283  	case Uint:
  2284  		return uint64(*(*uint)(p))
  2285  	case Uint8:
  2286  		return uint64(*(*uint8)(p))
  2287  	case Uint16:
  2288  		return uint64(*(*uint16)(p))
  2289  	case Uint32:
  2290  		return uint64(*(*uint32)(p))
  2291  	case Uint64:
  2292  		return *(*uint64)(p)
  2293  	case Uintptr:
  2294  		return uint64(*(*uintptr)(p))
  2295  	}
  2296  	panic(&ValueError{"reflect.Value.Uint", v.kind()})
  2297  }
  2298  
  2299  //go:nocheckptr
  2300  // This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled,
  2301  // which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr())
  2302  // and make an exception.
  2303  
  2304  // UnsafeAddr returns a pointer to v's data.
  2305  // It is for advanced clients that also import the "unsafe" package.
  2306  // It panics if v is not addressable.
  2307  func (v Value) UnsafeAddr() uintptr {
  2308  	// TODO: deprecate
  2309  	if v.typ == nil {
  2310  		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
  2311  	}
  2312  	if v.flag&flagAddr == 0 {
  2313  		panic("reflect.Value.UnsafeAddr of unaddressable value")
  2314  	}
  2315  	return uintptr(v.ptr)
  2316  }
  2317  
  2318  // StringHeader is the runtime representation of a string.
  2319  // It cannot be used safely or portably and its representation may
  2320  // change in a later release.
  2321  // Moreover, the Data field is not sufficient to guarantee the data
  2322  // it references will not be garbage collected, so programs must keep
  2323  // a separate, correctly typed pointer to the underlying data.
  2324  type StringHeader struct {
  2325  	Data uintptr
  2326  	Len  int
  2327  }
  2328  
  2329  // SliceHeader is the runtime representation of a slice.
  2330  // It cannot be used safely or portably and its representation may
  2331  // change in a later release.
  2332  // Moreover, the Data field is not sufficient to guarantee the data
  2333  // it references will not be garbage collected, so programs must keep
  2334  // a separate, correctly typed pointer to the underlying data.
  2335  type SliceHeader struct {
  2336  	Data uintptr
  2337  	Len  int
  2338  	Cap  int
  2339  }
  2340  
  2341  func typesMustMatch(what string, t1, t2 Type) {
  2342  	if t1 != t2 {
  2343  		panic(what + ": " + t1.String() + " != " + t2.String())
  2344  	}
  2345  }
  2346  
  2347  // arrayAt returns the i-th element of p,
  2348  // an array whose elements are eltSize bytes wide.
  2349  // The array pointed at by p must have at least i+1 elements:
  2350  // it is invalid (but impossible to check here) to pass i >= len,
  2351  // because then the result will point outside the array.
  2352  // whySafe must explain why i < len. (Passing "i < len" is fine;
  2353  // the benefit is to surface this assumption at the call site.)
  2354  func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
  2355  	return add(p, uintptr(i)*eltSize, "i < len")
  2356  }
  2357  
  2358  // grow grows the slice s so that it can hold extra more values, allocating
  2359  // more capacity if needed. It also returns the old and new slice lengths.
  2360  func grow(s Value, extra int) (Value, int, int) {
  2361  	i0 := s.Len()
  2362  	i1 := i0 + extra
  2363  	if i1 < i0 {
  2364  		panic("reflect.Append: slice overflow")
  2365  	}
  2366  	m := s.Cap()
  2367  	if i1 <= m {
  2368  		return s.Slice(0, i1), i0, i1
  2369  	}
  2370  	if m == 0 {
  2371  		m = extra
  2372  	} else {
  2373  		for m < i1 {
  2374  			if i0 < 1024 {
  2375  				m += m
  2376  			} else {
  2377  				m += m / 4
  2378  			}
  2379  		}
  2380  	}
  2381  	t := MakeSlice(s.Type(), i1, m)
  2382  	Copy(t, s)
  2383  	return t, i0, i1
  2384  }
  2385  
  2386  // Append appends the values x to a slice s and returns the resulting slice.
  2387  // As in Go, each x's value must be assignable to the slice's element type.
  2388  func Append(s Value, x ...Value) Value {
  2389  	s.mustBe(Slice)
  2390  	s, i0, i1 := grow(s, len(x))
  2391  	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
  2392  		s.Index(i).Set(x[j])
  2393  	}
  2394  	return s
  2395  }
  2396  
  2397  // AppendSlice appends a slice t to a slice s and returns the resulting slice.
  2398  // The slices s and t must have the same element type.
  2399  func AppendSlice(s, t Value) Value {
  2400  	s.mustBe(Slice)
  2401  	t.mustBe(Slice)
  2402  	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
  2403  	s, i0, i1 := grow(s, t.Len())
  2404  	Copy(s.Slice(i0, i1), t)
  2405  	return s
  2406  }
  2407  
  2408  // Copy copies the contents of src into dst until either
  2409  // dst has been filled or src has been exhausted.
  2410  // It returns the number of elements copied.
  2411  // Dst and src each must have kind Slice or Array, and
  2412  // dst and src must have the same element type.
  2413  //
  2414  // As a special case, src can have kind String if the element type of dst is kind Uint8.
  2415  func Copy(dst, src Value) int {
  2416  	dk := dst.kind()
  2417  	if dk != Array && dk != Slice {
  2418  		panic(&ValueError{"reflect.Copy", dk})
  2419  	}
  2420  	if dk == Array {
  2421  		dst.mustBeAssignable()
  2422  	}
  2423  	dst.mustBeExported()
  2424  
  2425  	sk := src.kind()
  2426  	var stringCopy bool
  2427  	if sk != Array && sk != Slice {
  2428  		stringCopy = sk == String && dst.typ.Elem().Kind() == Uint8
  2429  		if !stringCopy {
  2430  			panic(&ValueError{"reflect.Copy", sk})
  2431  		}
  2432  	}
  2433  	src.mustBeExported()
  2434  
  2435  	de := dst.typ.Elem()
  2436  	if !stringCopy {
  2437  		se := src.typ.Elem()
  2438  		typesMustMatch("reflect.Copy", de, se)
  2439  	}
  2440  
  2441  	var ds, ss unsafeheader.Slice
  2442  	if dk == Array {
  2443  		ds.Data = dst.ptr
  2444  		ds.Len = dst.Len()
  2445  		ds.Cap = ds.Len
  2446  	} else {
  2447  		ds = *(*unsafeheader.Slice)(dst.ptr)
  2448  	}
  2449  	if sk == Array {
  2450  		ss.Data = src.ptr
  2451  		ss.Len = src.Len()
  2452  		ss.Cap = ss.Len
  2453  	} else if sk == Slice {
  2454  		ss = *(*unsafeheader.Slice)(src.ptr)
  2455  	} else {
  2456  		sh := *(*unsafeheader.String)(src.ptr)
  2457  		ss.Data = sh.Data
  2458  		ss.Len = sh.Len
  2459  		ss.Cap = sh.Len
  2460  	}
  2461  
  2462  	return typedslicecopy(de.common(), ds, ss)
  2463  }
  2464  
  2465  // A runtimeSelect is a single case passed to rselect.
  2466  // This must match ../runtime/select.go:/runtimeSelect
  2467  type runtimeSelect struct {
  2468  	dir SelectDir      // SelectSend, SelectRecv or SelectDefault
  2469  	typ *rtype         // channel type
  2470  	ch  unsafe.Pointer // channel
  2471  	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
  2472  }
  2473  
  2474  // rselect runs a select. It returns the index of the chosen case.
  2475  // If the case was a receive, val is filled in with the received value.
  2476  // The conventional OK bool indicates whether the receive corresponds
  2477  // to a sent value.
  2478  //go:noescape
  2479  func rselect([]runtimeSelect) (chosen int, recvOK bool)
  2480  
  2481  // A SelectDir describes the communication direction of a select case.
  2482  type SelectDir int
  2483  
  2484  // NOTE: These values must match ../runtime/select.go:/selectDir.
  2485  
  2486  const (
  2487  	_             SelectDir = iota
  2488  	SelectSend              // case Chan <- Send
  2489  	SelectRecv              // case <-Chan:
  2490  	SelectDefault           // default
  2491  )
  2492  
  2493  // A SelectCase describes a single case in a select operation.
  2494  // The kind of case depends on Dir, the communication direction.
  2495  //
  2496  // If Dir is SelectDefault, the case represents a default case.
  2497  // Chan and Send must be zero Values.
  2498  //
  2499  // If Dir is SelectSend, the case represents a send operation.
  2500  // Normally Chan's underlying value must be a channel, and Send's underlying value must be
  2501  // assignable to the channel's element type. As a special case, if Chan is a zero Value,
  2502  // then the case is ignored, and the field Send will also be ignored and may be either zero
  2503  // or non-zero.
  2504  //
  2505  // If Dir is SelectRecv, the case represents a receive operation.
  2506  // Normally Chan's underlying value must be a channel and Send must be a zero Value.
  2507  // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
  2508  // When a receive operation is selected, the received Value is returned by Select.
  2509  //
  2510  type SelectCase struct {
  2511  	Dir  SelectDir // direction of case
  2512  	Chan Value     // channel to use (for send or receive)
  2513  	Send Value     // value to send (for send)
  2514  }
  2515  
  2516  // Select executes a select operation described by the list of cases.
  2517  // Like the Go select statement, it blocks until at least one of the cases
  2518  // can proceed, makes a uniform pseudo-random choice,
  2519  // and then executes that case. It returns the index of the chosen case
  2520  // and, if that case was a receive operation, the value received and a
  2521  // boolean indicating whether the value corresponds to a send on the channel
  2522  // (as opposed to a zero value received because the channel is closed).
  2523  // Select supports a maximum of 65536 cases.
  2524  func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
  2525  	if len(cases) > 65536 {
  2526  		panic("reflect.Select: too many cases (max 65536)")
  2527  	}
  2528  	// NOTE: Do not trust that caller is not modifying cases data underfoot.
  2529  	// The range is safe because the caller cannot modify our copy of the len
  2530  	// and each iteration makes its own copy of the value c.
  2531  	var runcases []runtimeSelect
  2532  	if len(cases) > 4 {
  2533  		// Slice is heap allocated due to runtime dependent capacity.
  2534  		runcases = make([]runtimeSelect, len(cases))
  2535  	} else {
  2536  		// Slice can be stack allocated due to constant capacity.
  2537  		runcases = make([]runtimeSelect, len(cases), 4)
  2538  	}
  2539  
  2540  	haveDefault := false
  2541  	for i, c := range cases {
  2542  		rc := &runcases[i]
  2543  		rc.dir = c.Dir
  2544  		switch c.Dir {
  2545  		default:
  2546  			panic("reflect.Select: invalid Dir")
  2547  
  2548  		case SelectDefault: // default
  2549  			if haveDefault {
  2550  				panic("reflect.Select: multiple default cases")
  2551  			}
  2552  			haveDefault = true
  2553  			if c.Chan.IsValid() {
  2554  				panic("reflect.Select: default case has Chan value")
  2555  			}
  2556  			if c.Send.IsValid() {
  2557  				panic("reflect.Select: default case has Send value")
  2558  			}
  2559  
  2560  		case SelectSend:
  2561  			ch := c.Chan
  2562  			if !ch.IsValid() {
  2563  				break
  2564  			}
  2565  			ch.mustBe(Chan)
  2566  			ch.mustBeExported()
  2567  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  2568  			if ChanDir(tt.dir)&SendDir == 0 {
  2569  				panic("reflect.Select: SendDir case using recv-only channel")
  2570  			}
  2571  			rc.ch = ch.pointer()
  2572  			rc.typ = &tt.rtype
  2573  			v := c.Send
  2574  			if !v.IsValid() {
  2575  				panic("reflect.Select: SendDir case missing Send value")
  2576  			}
  2577  			v.mustBeExported()
  2578  			v = v.assignTo("reflect.Select", tt.elem, nil)
  2579  			if v.flag&flagIndir != 0 {
  2580  				rc.val = v.ptr
  2581  			} else {
  2582  				rc.val = unsafe.Pointer(&v.ptr)
  2583  			}
  2584  
  2585  		case SelectRecv:
  2586  			if c.Send.IsValid() {
  2587  				panic("reflect.Select: RecvDir case has Send value")
  2588  			}
  2589  			ch := c.Chan
  2590  			if !ch.IsValid() {
  2591  				break
  2592  			}
  2593  			ch.mustBe(Chan)
  2594  			ch.mustBeExported()
  2595  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  2596  			if ChanDir(tt.dir)&RecvDir == 0 {
  2597  				panic("reflect.Select: RecvDir case using send-only channel")
  2598  			}
  2599  			rc.ch = ch.pointer()
  2600  			rc.typ = &tt.rtype
  2601  			rc.val = unsafe_New(tt.elem)
  2602  		}
  2603  	}
  2604  
  2605  	chosen, recvOK = rselect(runcases)
  2606  	if runcases[chosen].dir == SelectRecv {
  2607  		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
  2608  		t := tt.elem
  2609  		p := runcases[chosen].val
  2610  		fl := flag(t.Kind())
  2611  		if ifaceIndir(t) {
  2612  			recv = Value{t, p, fl | flagIndir}
  2613  		} else {
  2614  			recv = Value{t, *(*unsafe.Pointer)(p), fl}
  2615  		}
  2616  	}
  2617  	return chosen, recv, recvOK
  2618  }
  2619  
  2620  /*
  2621   * constructors
  2622   */
  2623  
  2624  // implemented in package runtime
  2625  func unsafe_New(*rtype) unsafe.Pointer
  2626  func unsafe_NewArray(*rtype, int) unsafe.Pointer
  2627  
  2628  // MakeSlice creates a new zero-initialized slice value
  2629  // for the specified slice type, length, and capacity.
  2630  func MakeSlice(typ Type, len, cap int) Value {
  2631  	if typ.Kind() != Slice {
  2632  		panic("reflect.MakeSlice of non-slice type")
  2633  	}
  2634  	if len < 0 {
  2635  		panic("reflect.MakeSlice: negative len")
  2636  	}
  2637  	if cap < 0 {
  2638  		panic("reflect.MakeSlice: negative cap")
  2639  	}
  2640  	if len > cap {
  2641  		panic("reflect.MakeSlice: len > cap")
  2642  	}
  2643  
  2644  	s := unsafeheader.Slice{Data: unsafe_NewArray(typ.Elem().(*rtype), cap), Len: len, Cap: cap}
  2645  	return Value{typ.(*rtype), unsafe.Pointer(&s), flagIndir | flag(Slice)}
  2646  }
  2647  
  2648  // MakeChan creates a new channel with the specified type and buffer size.
  2649  func MakeChan(typ Type, buffer int) Value {
  2650  	if typ.Kind() != Chan {
  2651  		panic("reflect.MakeChan of non-chan type")
  2652  	}
  2653  	if buffer < 0 {
  2654  		panic("reflect.MakeChan: negative buffer size")
  2655  	}
  2656  	if typ.ChanDir() != BothDir {
  2657  		panic("reflect.MakeChan: unidirectional channel type")
  2658  	}
  2659  	t := typ.(*rtype)
  2660  	ch := makechan(t, buffer)
  2661  	return Value{t, ch, flag(Chan)}
  2662  }
  2663  
  2664  // MakeMap creates a new map with the specified type.
  2665  func MakeMap(typ Type) Value {
  2666  	return MakeMapWithSize(typ, 0)
  2667  }
  2668  
  2669  // MakeMapWithSize creates a new map with the specified type
  2670  // and initial space for approximately n elements.
  2671  func MakeMapWithSize(typ Type, n int) Value {
  2672  	if typ.Kind() != Map {
  2673  		panic("reflect.MakeMapWithSize of non-map type")
  2674  	}
  2675  	t := typ.(*rtype)
  2676  	m := makemap(t, n)
  2677  	return Value{t, m, flag(Map)}
  2678  }
  2679  
  2680  // Indirect returns the value that v points to.
  2681  // If v is a nil pointer, Indirect returns a zero Value.
  2682  // If v is not a pointer, Indirect returns v.
  2683  func Indirect(v Value) Value {
  2684  	if v.Kind() != Ptr {
  2685  		return v
  2686  	}
  2687  	return v.Elem()
  2688  }
  2689  
  2690  // ValueOf returns a new Value initialized to the concrete value
  2691  // stored in the interface i. ValueOf(nil) returns the zero Value.
  2692  func ValueOf(i interface{}) Value {
  2693  	if i == nil {
  2694  		return Value{}
  2695  	}
  2696  
  2697  	// TODO: Maybe allow contents of a Value to live on the stack.
  2698  	// For now we make the contents always escape to the heap. It
  2699  	// makes life easier in a few places (see chanrecv/mapassign
  2700  	// comment below).
  2701  	escapes(i)
  2702  
  2703  	return unpackEface(i)
  2704  }
  2705  
  2706  // Zero returns a Value representing the zero value for the specified type.
  2707  // The result is different from the zero value of the Value struct,
  2708  // which represents no value at all.
  2709  // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
  2710  // The returned value is neither addressable nor settable.
  2711  func Zero(typ Type) Value {
  2712  	if typ == nil {
  2713  		panic("reflect: Zero(nil)")
  2714  	}
  2715  	t := typ.(*rtype)
  2716  	fl := flag(t.Kind())
  2717  	if ifaceIndir(t) {
  2718  		var p unsafe.Pointer
  2719  		if t.size <= maxZero {
  2720  			p = unsafe.Pointer(&zeroVal[0])
  2721  		} else {
  2722  			p = unsafe_New(t)
  2723  		}
  2724  		return Value{t, p, fl | flagIndir}
  2725  	}
  2726  	return Value{t, nil, fl}
  2727  }
  2728  
  2729  // must match declarations in runtime/map.go.
  2730  const maxZero = 1024
  2731  
  2732  //go:linkname zeroVal runtime.zeroVal
  2733  var zeroVal [maxZero]byte
  2734  
  2735  // New returns a Value representing a pointer to a new zero value
  2736  // for the specified type. That is, the returned Value's Type is PtrTo(typ).
  2737  func New(typ Type) Value {
  2738  	if typ == nil {
  2739  		panic("reflect: New(nil)")
  2740  	}
  2741  	t := typ.(*rtype)
  2742  	pt := t.ptrTo()
  2743  	if ifaceIndir(pt) {
  2744  		// This is a pointer to a go:notinheap type.
  2745  		panic("reflect: New of type that may not be allocated in heap (possibly undefined cgo C type)")
  2746  	}
  2747  	ptr := unsafe_New(t)
  2748  	fl := flag(Ptr)
  2749  	return Value{pt, ptr, fl}
  2750  }
  2751  
  2752  // NewAt returns a Value representing a pointer to a value of the
  2753  // specified type, using p as that pointer.
  2754  func NewAt(typ Type, p unsafe.Pointer) Value {
  2755  	fl := flag(Ptr)
  2756  	t := typ.(*rtype)
  2757  	return Value{t.ptrTo(), p, fl}
  2758  }
  2759  
  2760  // assignTo returns a value v that can be assigned directly to typ.
  2761  // It panics if v is not assignable to typ.
  2762  // For a conversion to an interface type, target is a suggested scratch space to use.
  2763  // target must be initialized memory (or nil).
  2764  func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
  2765  	if v.flag&flagMethod != 0 {
  2766  		v = makeMethodValue(context, v)
  2767  	}
  2768  
  2769  	switch {
  2770  	case directlyAssignable(dst, v.typ):
  2771  		// Overwrite type so that they match.
  2772  		// Same memory layout, so no harm done.
  2773  		fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
  2774  		fl |= flag(dst.Kind())
  2775  		return Value{dst, v.ptr, fl}
  2776  
  2777  	case implements(dst, v.typ):
  2778  		if target == nil {
  2779  			target = unsafe_New(dst)
  2780  		}
  2781  		if v.Kind() == Interface && v.IsNil() {
  2782  			// A nil ReadWriter passed to nil Reader is OK,
  2783  			// but using ifaceE2I below will panic.
  2784  			// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
  2785  			return Value{dst, nil, flag(Interface)}
  2786  		}
  2787  		x := valueInterface(v, false)
  2788  		if dst.NumMethod() == 0 {
  2789  			*(*interface{})(target) = x
  2790  		} else {
  2791  			ifaceE2I(dst, x, target)
  2792  		}
  2793  		return Value{dst, target, flagIndir | flag(Interface)}
  2794  	}
  2795  
  2796  	// Failed.
  2797  	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
  2798  }
  2799  
  2800  // Convert returns the value v converted to type t.
  2801  // If the usual Go conversion rules do not allow conversion
  2802  // of the value v to type t, or if converting v to type t panics, Convert panics.
  2803  func (v Value) Convert(t Type) Value {
  2804  	if v.flag&flagMethod != 0 {
  2805  		v = makeMethodValue("Convert", v)
  2806  	}
  2807  	op := convertOp(t.common(), v.typ)
  2808  	if op == nil {
  2809  		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  2810  	}
  2811  	return op(v, t)
  2812  }
  2813  
  2814  // CanConvert reports whether the value v can be converted to type t.
  2815  // If v.CanConvert(t) returns true then v.Convert(t) will not panic.
  2816  func (v Value) CanConvert(t Type) bool {
  2817  	vt := v.Type()
  2818  	if !vt.ConvertibleTo(t) {
  2819  		return false
  2820  	}
  2821  	// Currently the only conversion that is OK in terms of type
  2822  	// but that can panic depending on the value is converting
  2823  	// from slice to pointer-to-array.
  2824  	if vt.Kind() == Slice && t.Kind() == Ptr && t.Elem().Kind() == Array {
  2825  		n := t.Elem().Len()
  2826  		h := (*unsafeheader.Slice)(v.ptr)
  2827  		if n > h.Len {
  2828  			return false
  2829  		}
  2830  	}
  2831  	return true
  2832  }
  2833  
  2834  // convertOp returns the function to convert a value of type src
  2835  // to a value of type dst. If the conversion is illegal, convertOp returns nil.
  2836  func convertOp(dst, src *rtype) func(Value, Type) Value {
  2837  	switch src.Kind() {
  2838  	case Int, Int8, Int16, Int32, Int64:
  2839  		switch dst.Kind() {
  2840  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2841  			return cvtInt
  2842  		case Float32, Float64:
  2843  			return cvtIntFloat
  2844  		case String:
  2845  			return cvtIntString
  2846  		}
  2847  
  2848  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2849  		switch dst.Kind() {
  2850  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2851  			return cvtUint
  2852  		case Float32, Float64:
  2853  			return cvtUintFloat
  2854  		case String:
  2855  			return cvtUintString
  2856  		}
  2857  
  2858  	case Float32, Float64:
  2859  		switch dst.Kind() {
  2860  		case Int, Int8, Int16, Int32, Int64:
  2861  			return cvtFloatInt
  2862  		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2863  			return cvtFloatUint
  2864  		case Float32, Float64:
  2865  			return cvtFloat
  2866  		}
  2867  
  2868  	case Complex64, Complex128:
  2869  		switch dst.Kind() {
  2870  		case Complex64, Complex128:
  2871  			return cvtComplex
  2872  		}
  2873  
  2874  	case String:
  2875  		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
  2876  			switch dst.Elem().Kind() {
  2877  			case Uint8:
  2878  				return cvtStringBytes
  2879  			case Int32:
  2880  				return cvtStringRunes
  2881  			}
  2882  		}
  2883  
  2884  	case Slice:
  2885  		if dst.Kind() == String && src.Elem().PkgPath() == "" {
  2886  			switch src.Elem().Kind() {
  2887  			case Uint8:
  2888  				return cvtBytesString
  2889  			case Int32:
  2890  				return cvtRunesString
  2891  			}
  2892  		}
  2893  		// "x is a slice, T is a pointer-to-array type,
  2894  		// and the slice and array types have identical element types."
  2895  		if dst.Kind() == Ptr && dst.Elem().Kind() == Array && src.Elem() == dst.Elem().Elem() {
  2896  			return cvtSliceArrayPtr
  2897  		}
  2898  
  2899  	case Chan:
  2900  		if dst.Kind() == Chan && specialChannelAssignability(dst, src) {
  2901  			return cvtDirect
  2902  		}
  2903  	}
  2904  
  2905  	// dst and src have same underlying type.
  2906  	if haveIdenticalUnderlyingType(dst, src, false) {
  2907  		return cvtDirect
  2908  	}
  2909  
  2910  	// dst and src are non-defined pointer types with same underlying base type.
  2911  	if dst.Kind() == Ptr && dst.Name() == "" &&
  2912  		src.Kind() == Ptr && src.Name() == "" &&
  2913  		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) {
  2914  		return cvtDirect
  2915  	}
  2916  
  2917  	if implements(dst, src) {
  2918  		if src.Kind() == Interface {
  2919  			return cvtI2I
  2920  		}
  2921  		return cvtT2I
  2922  	}
  2923  
  2924  	return nil
  2925  }
  2926  
  2927  // makeInt returns a Value of type t equal to bits (possibly truncated),
  2928  // where t is a signed or unsigned int type.
  2929  func makeInt(f flag, bits uint64, t Type) Value {
  2930  	typ := t.common()
  2931  	ptr := unsafe_New(typ)
  2932  	switch typ.size {
  2933  	case 1:
  2934  		*(*uint8)(ptr) = uint8(bits)
  2935  	case 2:
  2936  		*(*uint16)(ptr) = uint16(bits)
  2937  	case 4:
  2938  		*(*uint32)(ptr) = uint32(bits)
  2939  	case 8:
  2940  		*(*uint64)(ptr) = bits
  2941  	}
  2942  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2943  }
  2944  
  2945  // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
  2946  // where t is a float32 or float64 type.
  2947  func makeFloat(f flag, v float64, t Type) Value {
  2948  	typ := t.common()
  2949  	ptr := unsafe_New(typ)
  2950  	switch typ.size {
  2951  	case 4:
  2952  		*(*float32)(ptr) = float32(v)
  2953  	case 8:
  2954  		*(*float64)(ptr) = v
  2955  	}
  2956  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2957  }
  2958  
  2959  // makeFloat returns a Value of type t equal to v, where t is a float32 type.
  2960  func makeFloat32(f flag, v float32, t Type) Value {
  2961  	typ := t.common()
  2962  	ptr := unsafe_New(typ)
  2963  	*(*float32)(ptr) = v
  2964  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2965  }
  2966  
  2967  // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
  2968  // where t is a complex64 or complex128 type.
  2969  func makeComplex(f flag, v complex128, t Type) Value {
  2970  	typ := t.common()
  2971  	ptr := unsafe_New(typ)
  2972  	switch typ.size {
  2973  	case 8:
  2974  		*(*complex64)(ptr) = complex64(v)
  2975  	case 16:
  2976  		*(*complex128)(ptr) = v
  2977  	}
  2978  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2979  }
  2980  
  2981  func makeString(f flag, v string, t Type) Value {
  2982  	ret := New(t).Elem()
  2983  	ret.SetString(v)
  2984  	ret.flag = ret.flag&^flagAddr | f
  2985  	return ret
  2986  }
  2987  
  2988  func makeBytes(f flag, v []byte, t Type) Value {
  2989  	ret := New(t).Elem()
  2990  	ret.SetBytes(v)
  2991  	ret.flag = ret.flag&^flagAddr | f
  2992  	return ret
  2993  }
  2994  
  2995  func makeRunes(f flag, v []rune, t Type) Value {
  2996  	ret := New(t).Elem()
  2997  	ret.setRunes(v)
  2998  	ret.flag = ret.flag&^flagAddr | f
  2999  	return ret
  3000  }
  3001  
  3002  // These conversion functions are returned by convertOp
  3003  // for classes of conversions. For example, the first function, cvtInt,
  3004  // takes any value v of signed int type and returns the value converted
  3005  // to type t, where t is any signed or unsigned int type.
  3006  
  3007  // convertOp: intXX -> [u]intXX
  3008  func cvtInt(v Value, t Type) Value {
  3009  	return makeInt(v.flag.ro(), uint64(v.Int()), t)
  3010  }
  3011  
  3012  // convertOp: uintXX -> [u]intXX
  3013  func cvtUint(v Value, t Type) Value {
  3014  	return makeInt(v.flag.ro(), v.Uint(), t)
  3015  }
  3016  
  3017  // convertOp: floatXX -> intXX
  3018  func cvtFloatInt(v Value, t Type) Value {
  3019  	return makeInt(v.flag.ro(), uint64(int64(v.Float())), t)
  3020  }
  3021  
  3022  // convertOp: floatXX -> uintXX
  3023  func cvtFloatUint(v Value, t Type) Value {
  3024  	return makeInt(v.flag.ro(), uint64(v.Float()), t)
  3025  }
  3026  
  3027  // convertOp: intXX -> floatXX
  3028  func cvtIntFloat(v Value, t Type) Value {
  3029  	return makeFloat(v.flag.ro(), float64(v.Int()), t)
  3030  }
  3031  
  3032  // convertOp: uintXX -> floatXX
  3033  func cvtUintFloat(v Value, t Type) Value {
  3034  	return makeFloat(v.flag.ro(), float64(v.Uint()), t)
  3035  }
  3036  
  3037  // convertOp: floatXX -> floatXX
  3038  func cvtFloat(v Value, t Type) Value {
  3039  	if v.Type().Kind() == Float32 && t.Kind() == Float32 {
  3040  		// Don't do any conversion if both types have underlying type float32.
  3041  		// This avoids converting to float64 and back, which will
  3042  		// convert a signaling NaN to a quiet NaN. See issue 36400.
  3043  		return makeFloat32(v.flag.ro(), *(*float32)(v.ptr), t)
  3044  	}
  3045  	return makeFloat(v.flag.ro(), v.Float(), t)
  3046  }
  3047  
  3048  // convertOp: complexXX -> complexXX
  3049  func cvtComplex(v Value, t Type) Value {
  3050  	return makeComplex(v.flag.ro(), v.Complex(), t)
  3051  }
  3052  
  3053  // convertOp: intXX -> string
  3054  func cvtIntString(v Value, t Type) Value {
  3055  	s := "\uFFFD"
  3056  	if x := v.Int(); int64(rune(x)) == x {
  3057  		s = string(rune(x))
  3058  	}
  3059  	return makeString(v.flag.ro(), s, t)
  3060  }
  3061  
  3062  // convertOp: uintXX -> string
  3063  func cvtUintString(v Value, t Type) Value {
  3064  	s := "\uFFFD"
  3065  	if x := v.Uint(); uint64(rune(x)) == x {
  3066  		s = string(rune(x))
  3067  	}
  3068  	return makeString(v.flag.ro(), s, t)
  3069  }
  3070  
  3071  // convertOp: []byte -> string
  3072  func cvtBytesString(v Value, t Type) Value {
  3073  	return makeString(v.flag.ro(), string(v.Bytes()), t)
  3074  }
  3075  
  3076  // convertOp: string -> []byte
  3077  func cvtStringBytes(v Value, t Type) Value {
  3078  	return makeBytes(v.flag.ro(), []byte(v.String()), t)
  3079  }
  3080  
  3081  // convertOp: []rune -> string
  3082  func cvtRunesString(v Value, t Type) Value {
  3083  	return makeString(v.flag.ro(), string(v.runes()), t)
  3084  }
  3085  
  3086  // convertOp: string -> []rune
  3087  func cvtStringRunes(v Value, t Type) Value {
  3088  	return makeRunes(v.flag.ro(), []rune(v.String()), t)
  3089  }
  3090  
  3091  // convertOp: []T -> *[N]T
  3092  func cvtSliceArrayPtr(v Value, t Type) Value {
  3093  	n := t.Elem().Len()
  3094  	h := (*unsafeheader.Slice)(v.ptr)
  3095  	if n > h.Len {
  3096  		panic("reflect: cannot convert slice with length " + itoa.Itoa(h.Len) + " to pointer to array with length " + itoa.Itoa(n))
  3097  	}
  3098  	return Value{t.common(), h.Data, v.flag&^(flagIndir|flagAddr|flagKindMask) | flag(Ptr)}
  3099  }
  3100  
  3101  // convertOp: direct copy
  3102  func cvtDirect(v Value, typ Type) Value {
  3103  	f := v.flag
  3104  	t := typ.common()
  3105  	ptr := v.ptr
  3106  	if f&flagAddr != 0 {
  3107  		// indirect, mutable word - make a copy
  3108  		c := unsafe_New(t)
  3109  		typedmemmove(t, c, ptr)
  3110  		ptr = c
  3111  		f &^= flagAddr
  3112  	}
  3113  	return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f?
  3114  }
  3115  
  3116  // convertOp: concrete -> interface
  3117  func cvtT2I(v Value, typ Type) Value {
  3118  	target := unsafe_New(typ.common())
  3119  	x := valueInterface(v, false)
  3120  	if typ.NumMethod() == 0 {
  3121  		*(*interface{})(target) = x
  3122  	} else {
  3123  		ifaceE2I(typ.(*rtype), x, target)
  3124  	}
  3125  	return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)}
  3126  }
  3127  
  3128  // convertOp: interface -> interface
  3129  func cvtI2I(v Value, typ Type) Value {
  3130  	if v.IsNil() {
  3131  		ret := Zero(typ)
  3132  		ret.flag |= v.flag.ro()
  3133  		return ret
  3134  	}
  3135  	return cvtT2I(v.Elem(), typ)
  3136  }
  3137  
  3138  // implemented in ../runtime
  3139  func chancap(ch unsafe.Pointer) int
  3140  func chanclose(ch unsafe.Pointer)
  3141  func chanlen(ch unsafe.Pointer) int
  3142  
  3143  // Note: some of the noescape annotations below are technically a lie,
  3144  // but safe in the context of this package. Functions like chansend
  3145  // and mapassign don't escape the referent, but may escape anything
  3146  // the referent points to (they do shallow copies of the referent).
  3147  // It is safe in this package because the referent may only point
  3148  // to something a Value may point to, and that is always in the heap
  3149  // (due to the escapes() call in ValueOf).
  3150  
  3151  //go:noescape
  3152  func chanrecv(ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
  3153  
  3154  //go:noescape
  3155  func chansend(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
  3156  
  3157  func makechan(typ *rtype, size int) (ch unsafe.Pointer)
  3158  func makemap(t *rtype, cap int) (m unsafe.Pointer)
  3159  
  3160  //go:noescape
  3161  func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
  3162  
  3163  //go:noescape
  3164  func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
  3165  
  3166  //go:noescape
  3167  func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
  3168  
  3169  // m escapes into the return value, but the caller of mapiterinit
  3170  // doesn't let the return value escape.
  3171  //go:noescape
  3172  func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
  3173  
  3174  //go:noescape
  3175  func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
  3176  
  3177  //go:noescape
  3178  func mapiterelem(it unsafe.Pointer) (elem unsafe.Pointer)
  3179  
  3180  //go:noescape
  3181  func mapiternext(it unsafe.Pointer)
  3182  
  3183  //go:noescape
  3184  func maplen(m unsafe.Pointer) int
  3185  
  3186  // call calls fn with "stackArgsSize" bytes of stack arguments laid out
  3187  // at stackArgs and register arguments laid out in regArgs. frameSize is
  3188  // the total amount of stack space that will be reserved by call, so this
  3189  // should include enough space to spill register arguments to the stack in
  3190  // case of preemption.
  3191  //
  3192  // After fn returns, call copies stackArgsSize-stackRetOffset result bytes
  3193  // back into stackArgs+stackRetOffset before returning, for any return
  3194  // values passed on the stack. Register-based return values will be found
  3195  // in the same regArgs structure.
  3196  //
  3197  // regArgs must also be prepared with an appropriate ReturnIsPtr bitmap
  3198  // indicating which registers will contain pointer-valued return values. The
  3199  // purpose of this bitmap is to keep pointers visible to the GC between
  3200  // returning from reflectcall and actually using them.
  3201  //
  3202  // If copying result bytes back from the stack, the caller must pass the
  3203  // argument frame type as stackArgsType, so that call can execute appropriate
  3204  // write barriers during the copy.
  3205  //
  3206  // Arguments passed through to call do not escape. The type is used only in a
  3207  // very limited callee of call, the stackArgs are copied, and regArgs is only
  3208  // used in the call frame.
  3209  //go:noescape
  3210  //go:linkname call runtime.reflectcall
  3211  func call(stackArgsType *rtype, f, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
  3212  
  3213  func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
  3214  
  3215  // memmove copies size bytes to dst from src. No write barriers are used.
  3216  //go:noescape
  3217  func memmove(dst, src unsafe.Pointer, size uintptr)
  3218  
  3219  // typedmemmove copies a value of type t to dst from src.
  3220  //go:noescape
  3221  func typedmemmove(t *rtype, dst, src unsafe.Pointer)
  3222  
  3223  // typedmemmovepartial is like typedmemmove but assumes that
  3224  // dst and src point off bytes into the value and only copies size bytes.
  3225  //go:noescape
  3226  func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
  3227  
  3228  // typedmemclr zeros the value at ptr of type t.
  3229  //go:noescape
  3230  func typedmemclr(t *rtype, ptr unsafe.Pointer)
  3231  
  3232  // typedmemclrpartial is like typedmemclr but assumes that
  3233  // dst points off bytes into the value and only clears size bytes.
  3234  //go:noescape
  3235  func typedmemclrpartial(t *rtype, ptr unsafe.Pointer, off, size uintptr)
  3236  
  3237  // typedslicecopy copies a slice of elemType values from src to dst,
  3238  // returning the number of elements copied.
  3239  //go:noescape
  3240  func typedslicecopy(elemType *rtype, dst, src unsafeheader.Slice) int
  3241  
  3242  //go:noescape
  3243  func typehash(t *rtype, p unsafe.Pointer, h uintptr) uintptr
  3244  
  3245  // Dummy annotation marking that the value x escapes,
  3246  // for use in cases where the reflect code is so clever that
  3247  // the compiler cannot follow.
  3248  func escapes(x interface{}) {
  3249  	if dummy.b {
  3250  		dummy.x = x
  3251  	}
  3252  }
  3253  
  3254  var dummy struct {
  3255  	b bool
  3256  	x interface{}
  3257  }
  3258  

View as plain text